Publications by authors named "Elizabeth L Wilder"

Genomic architecture appears to play crucial roles in health and a variety of diseases. How nuclear structures reorganize over different timescales is elusive, partly because the tools needed to probe and perturb them are not as advanced as needed by the field. To fill this gap, the National Institutes of Health Common Fund started a program in 2015, called the 4D Nucleome (4DN), with the goal of developing and ultimately applying technologies to interrogate the structure and function of nuclear organization in space and time.

View Article and Find Full Text PDF

Large-scale generation of protein capture reagents remains a technical challenge, but their generation is just the beginning. Validation is a critical, iterative process that yields different results for different uses. Independent, community-based validation offers the possibility of transparent data sharing, with use case–specific results made broadly available.

View Article and Find Full Text PDF

Given the heterogeneity of senescent cells, our knowledge of both the drivers and consequences of cellular senescence in tissues and organs remains limited, as is our understanding of how this process could be harnessed for human health. Here we identified five broad areas that would help propel the field forward.

View Article and Find Full Text PDF

The NIH Roadmap Epigenomics Program was launched to deliver reference epigenomic data from human tissues and cells, develop tools and methods for analyzing the epigenome, discover novel epigenetic marks, develop methods to manipulate the epigenome, and determine epigenetic contributions to diverse human diseases. Here, we comment on the outcomes from this program: the scientific contributions made possible by a consortium approach and the challenges, benefits, and lessons learned from this group science effort.

View Article and Find Full Text PDF

It has become exceedingly important to understand the precise molecular profiles of the nearly 40 trillion cells in an adult human because of their role in determining health, disease, and therapeutic outcome. The National Institutes of Health (NIH) Common Fund-supported Single Cell Analysis Program (SCAP) was designed to address this challenge. In this review, we outline the original program goals and provide a perspective on the impact of the program as a catalyst for exploration of heterogeneity of human tissues at the cellular level.

View Article and Find Full Text PDF

A mechanism for funding biomedical research at NIH that transcends Institute and Center boundaries is bearing fruit

View Article and Find Full Text PDF

In late 2004, an International Consortium of research groups were charged with the task of producing a high-quality molecular anatomy of the developing mammalian urogenital tract (UGT). Given the importance of these organ systems for human health and reproduction, the need for a systematic molecular and cellular description of their developmental programs was deemed a high priority. The information obtained through this initiative is anticipated to enable the highest level of basic and clinical research grounded on a 21st-century view of the developing anatomy.

View Article and Find Full Text PDF

Cell motility is regulated by extracellular cues and by intracellular factors that accumulate at sites of contact between cells and the extracellular matrix. One of these factors, focal adhesion kinase (FAK), regulates the cycle of focal adhesion formation and disassembly that is required for cell movement to occur. Recently, Wnt signaling has also been implicated in the control of cell movement in vertebrates, but the mechanism through which Wnt proteins influence motility is unclear.

View Article and Find Full Text PDF

beta-Catenin plays an important role in signal transduction pathways that regulate cellular differentiation and proliferation. The increased concentration of this protein in the cytoplasm favors its binding to the T-cell factor (TCF) family of DNA-binding proteins, and it subsequently translocates to the nucleus, where it induces transcription of specific genes. We explored mechanisms that lead to activation of beta-catenin/TCF-dependent transcription in esophageal squamous cell carcinoma (ESCC) independent of adenomatous polyposis coli and beta-catenin mutation.

View Article and Find Full Text PDF