Background: We have shown that the ouabain-sensitive α2 Na,K-ATPase is required for adrenocorticotropic hormone (ACTH)-induced hypertension and gestational blood pressure regulation. It is therefore of interest to explore whether this binding site participates in the development of other forms of hypertension, such as deoxycorticosterone acetate (DOCA)-salt using mutant mice with altered sensitivity to ouabain.
Methods: Wild-type (α1 ouabain-resistant, α2 ouabain-sensitive: α(R/R)α2(S/S)), α1-resistant, α2-resistant (α1(R/R)α2(R/R)) and α1-sensitive, α2-resistant (α1(S/S)α2(R/R)) mice were uninephrectomized and implanted with DOCA pellets.
Na,K-ATPase is ubiquitously expressed and is essential for maintaining electrochemical and osmotic gradients. The alpha subunit of Na,K-ATPase is the receptor for cardiotonic steroids, which act through the ouabain-binding site and are important in cardiovascular regulation. Interestingly, the presence of endogenous Na,K-ATPase ligands has been implicated in the natriuretic response to perturbations such as hypertension and salt loading; therefore, it is important to characterize the role of the ouabain-binding sites in this context.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
July 2008
ACTH-induced-hypertension is commonly employed as a model of stress-related hypertension, and despite extensive investigation, the mechanisms underlying elevated blood pressure (BP) are not well understood. We have reported that ACTH treatment increases tail-cuff systolic pressure in wild-type mice but not in mutant mice expressing ouabain-resistant alpha(2)-Na(+)-K(+)-ATPase subunits (alpha2(R/R) mice). Since tail-cuff measurements involve restraint stress, the present study used telemetry to distinguish between an effect of ACTH on resting BP vs.
View Article and Find Full Text PDF