Publications by authors named "Elizabeth L Kramer"

Rationale: Cystic Fibrosis (CF) progresses through recurrent infection and inflammation, causing permanent lung function loss and airway remodeling. CT scans reveal abnormally low-density lung parenchyma in CF, but its microstructural nature remains insufficiently explored due to clinical CT limitations. To this end, diffusion-weighted Xe MRI is a non-invasive and validated measure of lung microstructure.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs), a key component of early defense against microbial infection, are also associated with tissue injury. NET composition has been reported to vary with some disease states, but the composition and variability of NETs across many healthy subjects provide a critical comparison that has not been well investigated. We evaluated NETs from twelve healthy subjects of varying ages isolated from multiple blood draws over a three-and-one-half-year period to delineate the variability in extracellular DNA, protein, enzymatic activities, and susceptibility to protease inhibitors.

View Article and Find Full Text PDF

Neutrophil Extracellular Traps (NETs), a key component of early defense against microbial infection, are also associated with tissue injury. NET composition has been reported to vary with some disease states, but the composition and variability of NETs across many healthy subjects provides a critical comparison that has not been well investigated. We evaluated NETs from twelve healthy subjects of varying ages isolated from multiple blood draws over a three and one half-year period to delineate the variability in extracellular DNA, protein, enzymatic activities, and susceptibility to protease inhibitors.

View Article and Find Full Text PDF

Background: The primary underlying defect in cystic fibrosis (CF) is disrupted ion transport in epithelia throughout the body. It is unclear if symptoms such as airway hyperreactivity (AHR) and increased airway smooth muscle (ASM) volume in people with CF are due to inherent abnormalities in smooth muscle or are secondary to epithelial dysfunction. Transforming Growth Factor beta 1 (TGFβ) is an established genetic modifier of CF lung disease and a known driver of abnormal ASM function.

View Article and Find Full Text PDF

Background: Two functional measurements (multiple breath washout [MBW] and hyperpolarized Xe ventilation magnetic resonance imaging [Xe MRI]) have been shown to be more sensitive to cystic fibrosis (CF) lung obstruction than traditional spirometry. However, functional techniques may be sensitive to different underlying structural abnormalities. The purpose of this study was to determine relationships between these functional markers, their pathophysiology, and 1-year clinical outcomes.

View Article and Find Full Text PDF

Background: Cystic fibrosis (CF) patients develop severe lung disease including chronic airway infections, neutrophilic inflammation, and progressive fibrotic remodeling in airways. However, cellular and molecular processes that regulate excessive collagen deposition in airways in these patients remain unclear. Fibrocytes are bone marrow (BM)-derived mesenchymal cells that express the hematopoietic cell marker CD45, and mesenchymal cell markers and implicated in collagen deposition in several fibrotic diseases.

View Article and Find Full Text PDF

In cystic fibrosis the major cause of morbidity and mortality is lung disease characterized by inflammation and infection. The influence of sphingolipid metabolism is poorly understood with a lack of studies using human airway model systems. To investigate sphingolipid metabolism in cystic fibrosis and the effects of treatment with recombinant human acid ceramidase on inflammation and infection.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) provide host defense but can contribute to the pathobiology of diverse human diseases. We sought to determine the extent and mechanism by which NETs contribute to human airway cell inflammation. Primary normal human bronchial epithelial cells (HBEs) grown at air-liquid interface and wild-type (wt)CFBE41o- cells (expressing wtCFTR) were exposed to cell-free NETs from unrelated healthy volunteers for 18 h in vitro.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a lethal genetic disease characterized by progressive lung damage and airway obstruction. The majority of patients demonstrate airway hyperresponsiveness (AHR), which is associated with more rapid lung function decline. Recent studies in the neonatal CF pig demonstrated airway smooth muscle (ASM) dysfunction.

View Article and Find Full Text PDF

Cystic fibrosis (CF) produces variable lung disease phenotypes that are, in part, independent of the CF transmembrane conductance regulator ( CFTR) genotype. Transforming growth factor-β (TGFβ) is the best described genetic modifier of the CF phenotype, but its mechanism of action is unknown. We hypothesized that TGFβ is sufficient to drive pathognomonic features of CF lung disease in vivo and that CFTR deficiency enhances susceptibility to pathological TGFβ effects.

View Article and Find Full Text PDF

Traditional pulmonary therapies for cystic fibrosis (CF) target the downstream effects of CF transmembrane conductance regulator (CFTR) dysfunction (the cause of CF). Use of one such therapy, β-adrenergic bronchodilators (such as albuterol), is nearly universal for airway clearance. Conversely, novel modulator therapies restore function to select mutant CFTR proteins, offering a disease-modifying treatment.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a genetic disease characterized by progressive lung disease. Most CF therapies focus on treating secondary pulmonary complications rather than addressing the underlying processes inducing airway remodeling and ineffective response to infection. Transforming growth factor beta (TGFβ) is a cytokine involved in fibrosis, inflammation, and injury response as well as a genetic modifier and biomarker of CF lung disease.

View Article and Find Full Text PDF

Introduction: Mutations in the cystic fibrosis transmembrane conductance regulator protein (CFTR) cause cystic fibrosis (CF), a disease with life threatening pulmonary and gastrointestinal manifestations. Recent breakthrough therapies restore function to select disease-causing CFTR mutations. Ivacaftor is a small molecule that increases the open channel probability of certain CFTR mutations, producing clear evidence of bioactivity and efficacy in pediatric CF patients.

View Article and Find Full Text PDF

The mammalian target of rapamycin (mTOR) signaling pathway integrates environmental cues, promotes cell growth/differentiation, and regulates immune responses. Although inhibition of mTOR with rapamycin has potent immunosuppressive activity, mixed effects have been reported in OVA-induced models of allergic asthma. We investigated the impact of two rapamycin treatment protocols on the major characteristics of allergic asthma induced by the clinically relevant allergen, house dust mite (HDM).

View Article and Find Full Text PDF

Airway hyperreactivity (AHR) and remodeling are cardinal features of asthma and chronic obstructive pulmonary disease. New therapeutic targets are needed as some patients are refractory to current therapies and develop progressive airway remodeling and worsening AHR. The mammalian target of rapamycin (mTOR) is a key regulator of cellular proliferation and survival.

View Article and Find Full Text PDF

Increases in the epidermal growth factor receptor (EGFR) have been associated with the severity of airway thickening in chronic asthmatic subjects, and EGFR signaling is induced by asthma-related cytokines and inflammation. The goal of this study was to determine the role of EGFR signaling in a chronic allergic model of asthma and specifically in epithelial cells, which are increasingly recognized as playing an important role in asthma. EGFR activation was assessed in mice treated with intranasal house dust mite (HDM) for 3 wk.

View Article and Find Full Text PDF

Transforming growth factor (TGF)-alpha and its receptor, the epidermal growth factor receptor, are induced after lung injury and are associated with remodeling in chronic pulmonary diseases, such as pulmonary fibrosis and asthma. Expression of TGF-alpha in the lungs of adult mice causes fibrosis, pleural thickening, and pulmonary hypertension, in addition to increased expression of a transcription factor, early growth response-1 (Egr-1). Egr-1 was increased in airway smooth muscle (ASM) and the vascular adventitia in the lungs of mice conditionally expressing TGF-alpha in airway epithelium (Clara cell secretory protein-rtTA(+/-)/[tetO](7)-TGF-alpha(+/-)).

View Article and Find Full Text PDF

Transforming growth factor-alpha (TGF-alpha) and its receptor, the epithelial growth factor receptor (EGFR), have been associated with lung remodeling in premature infants with bronchopulmonary dysplasia (BPD). The goal of this study was to target TGF-alpha overexpression to the saccular phase of lung morphogenesis and determine early alterations in gene expression. Conditional lung-specific TGF-alpha bitransgenic mice and single-transgene control mice were generated.

View Article and Find Full Text PDF

Lens regeneration in the adult newt is a classic example of replacing a lost organ by the process of transdifferentiation. After lens removal, the pigmented epithelial cells of the dorsal iris proliferate and dedifferentiate to form a lens vesicle, which subsequently differentiates to form a new lens. In searching for factors that control this remarkable process, we investigated the expression and role of hedgehog pathway members.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: