Publications by authors named "Elizabeth L Clore"

Psychiatric diseases, including schizophrenia, bipolar disorder and major depression, are projected to lead global disease burden within the next decade. Pharmacotherapy, the primary--albeit often ineffective--treatment method, has remained largely unchanged over the past 50 years, highlighting the need for novel target discovery and improved mechanism-based treatments. Here, we examined in wild type mice the impact of chronic, systemic treatment with Compound 60 (Cpd-60), a slow-binding, benzamide-based inhibitor of the class I histone deacetylase (HDAC) family members, HDAC1 and HDAC2, in mood-related behavioral assays responsive to clinically effective drugs.

View Article and Find Full Text PDF

Multiple mechanisms likely contribute to neuronal death in Parkinson's disease (PD), including mitochondrial dysfunction and oxidative stress. Peroxisome proliferator-activated receptor gamma co-activator-1 alpha (PGC-1α) positively regulates the expression of genes required for mitochondrial biogenesis and the cell's antioxidant responses. Also, expression of PGC-1α-regulated genes is low in substantia nigra (SN) neurons in early PD.

View Article and Find Full Text PDF

Bipolar disorder (BP) is a debilitating psychiatric disorder, affecting ∼2% of the worldwide population, for which the etiological basis, pathogenesis, and neurocircuitry remain poorly understood. Individuals with BP suffer from recurrent episodes of mania and depression, which are commonly treated with the mood stabilizer lithium. However, nearly half of BP patients do not respond adequately to lithium therapy and the clinically relevant mechanisms of lithium for mood stabilization remain elusive.

View Article and Find Full Text PDF

Levels of glutathione are lower in the substantia nigra (SN) early in Parkinson's disease (PD) and this may contribute to mitochondrial dysfunction and oxidative stress. Oxidative stress may increase the accumulation of toxic forms of alpha-synuclein (SNCA). We hypothesized that supplementation with n-acetylcysteine (NAC), a source of cysteine--the limiting amino acid in glutathione synthesis, would protect against alpha-synuclein toxicity.

View Article and Find Full Text PDF