Publications by authors named "Elizabeth Krizman-Genda"

Sodium-dependent glutamate uptake is essential for limiting excitotoxicity, and dysregulation of this process has been implicated in a wide array of neurological disorders. The majority of forebrain glutamate uptake is mediated by the astroglial glutamate transporter, GLT-1. We and others have shown that this transporter undergoes endocytosis and degradation in response to activation of protein kinase C (PKC), however, the mechanisms involved remain unclear.

View Article and Find Full Text PDF

The sodium-dependent glutamate transporter, excitatory amino acid carrier 1 (EAAC1), has been implicated in the regulation of excitatory signaling and prevention of cell death in the nervous system. There is evidence that EAAC1 constitutively cycles on and off the plasma membrane and that under steady state conditions up to 80% of the transporter is intracellular. As is observed with other neurotransmitter transporters, the activity of EAAC1 is regulated by a variety of molecules, and some of these effects are associated with redistribution of EAAC1 on and off the plasma membrane.

View Article and Find Full Text PDF

Previously we have shown that platelet-derived growth factor (PDGF) rapidly increases the activity of the neuronal glutamate transporter, EAAC1. This increase in activity is associated with a rapid (within minutes) redistribution of transporter from a subcellular compartment to the plasma membrane and is blocked by inhibitors of phosphatidylinositol 3-kinase (PI3K). Similar effects of PI3K inhibitors have been observed for insulin-dependent up-regulation of the GLUT4 subtype of glucose transporter.

View Article and Find Full Text PDF