Lianas (woody climbers) are crucial components of tropical forests and they have been increasingly recognized to have profound effects on tropical forest carbon dynamics. Despite their importance, lianas' representation in vegetation models remains limited, partly due to the complexity of liana-tree dynamics and the diversity in liana life history strategies. This paper provides a comprehensive review of advances and challenges for mechanistically representing lianas in forest ecosystem models and a proposed path towards effectively representing lianas in these models.
View Article and Find Full Text PDFThis Special Issue contains a selection of papers dealing with wilt of banana (FWB), with a special focus on the strain Tropical Race 4 (TR4), and explores (1) options for effective integrated management strategies, (2) the detection and development of disease-resistant cultivars, and (3) the distribution and diversity of the pathogen [...
View Article and Find Full Text PDFIn the tropics, more precisely in equatorial dense rainforest, xylogenesis is driven by a little distinct climatological seasonality, and many tropical trees do not show clear growth rings. This makes retrospective analyses and modeling of future tree performance difficult. This research investigates the presence, the distinctness, and the periodicity of growth ring for dominant tree species in two semi-deciduous rainforests, which contrast in terms of precipitation dynamics.
View Article and Find Full Text PDFTropical forest phenology directly affects regional carbon cycles, but the relation between species-specific and whole-canopy phenology remains largely uncharacterized. We present a unique analysis of historical tropical tree phenology collected in the central Congo Basin, before large-scale impacts of human-induced climate change. Ground-based long-term (1937-1956) phenological observations of 140 tropical tree species are recovered, species-specific phenological patterns analyzed and related to historical meteorological records, and scaled to characterize stand-level canopy dynamics.
View Article and Find Full Text PDFTrees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge.
View Article and Find Full Text PDFForests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system. Remote-sensing estimates to quantify carbon losses from global forests are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced and satellite-derived approaches to evaluate the scale of the global forest carbon potential outside agricultural and urban lands.
View Article and Find Full Text PDFUnderstanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records.
View Article and Find Full Text PDFDetermining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies. Here, leveraging global tree databases, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity.
View Article and Find Full Text PDFThe latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.
View Article and Find Full Text PDFFusarium wilt, caused by the fungus f. sp. (Foc), poses a major threat to global banana production.
View Article and Find Full Text PDFThe responses of tropical forests to environmental change are critical uncertainties in predicting the future impacts of climate change. The positive phase of the 2015-2016 El Niño Southern Oscillation resulted in unprecedented heat and low precipitation in the tropics with substantial impacts on the global carbon cycle. The role of African tropical forests is uncertain as their responses to short-term drought and temperature anomalies have yet to be determined using on-the-ground measurements.
View Article and Find Full Text PDFStructurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions. Climate-driven vegetation models typically predict that this tropical forest 'carbon sink' will continue for decades. Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends.
View Article and Find Full Text PDFAim: Alien plant species can cause severe ecological and economic problems, and therefore attract a lot of research interest in biogeography and related fields. To identify potential future invasive species, we need to better understand the mechanisms underlying the abundances of invasive tree species in their new ranges, and whether these mechanisms differ between their native and alien ranges. Here, we test two hypotheses: that greater relative abundance is promoted by (a) functional difference from locally co-occurring trees, and (b) higher values than locally co-occurring trees for traits linked to competitive ability.
View Article and Find Full Text PDFIncreasing evidence is available for a positive effect of biodiversity on ecosystem productivity and standing biomass, also in highly diverse systems as tropical forests. Biodiversity conservation could therefore be a critical aspect of climate mitigation policies. There is, however, limited understanding of the role of individual species for this relationship, which could aid in focusing conservation efforts and forest management planning.
View Article and Find Full Text PDFHuman societies depend on an Earth system that operates within a constrained range of nutrient availability, yet the recent trajectory of terrestrial nitrogen (N) availability is uncertain. Examining patterns of foliar N concentrations and isotope ratios (δN) from more than 43,000 samples acquired over 37 years, here we show that foliar N concentration declined by 9% and foliar δN declined by 0.6-1.
View Article and Find Full Text PDFProtecting aboveground carbon stocks in tropical forests is essential for mitigating global climate change and is assumed to simultaneously conserve biodiversity. Although the relationship between tree diversity and carbon stocks is generally positive, the relationship remains unclear for consumers or decomposers. We assessed this relationship for multiple trophic levels across the tree of life (10 organismal groups, 3 kingdoms) in lowland rainforests of the Congo Basin.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2018
Proc Natl Acad Sci U S A
January 2016