Estrogens are potent regulators of socioemotional behavior across species. Ubiquitous in human and animal diets, plant-derived phytoestrogens (PE) bind estrogen receptors. While prior work has examined the impact of PE exposure on socioemotional behavior, findings are inconsistent across studies.
View Article and Find Full Text PDFAnxiety disorders are the most prevalent mental illnesses worldwide, exhibit high heritability, and affect twice as many women as men. To evaluate potential interactions between genetic background and cycling ovarian hormones on sex differences in susceptibility to negative valence behaviors relevant to anxiety disorders, we assayed avoidance behavior and cued threat memory dynamics in gonadally-intact adult male and female mice across four common inbred mouse strains: C57Bl/6J, 129S1/SVlmJ, DBA/2J, and BALB/cJ. Independent of sex, C57Bl/6J mice exhibited low avoidance but high threat memory, 129S1/SvlmJ mice high avoidance and high threat memory, DBA/2J mice low avoidance and low threat memory, and BALB/cJ mice high avoidance but low threat memory.
View Article and Find Full Text PDFSocioemotional health is positively correlated with improved cognitive and physical aging. Despite known sex differences in socioemotional behaviors and the trajectory of aging, the interactive effects between sex and aging on socioemotional outcomes are poorly understood. We performed the most comprehensive assessment of sex differences in socioemotional behaviors in C57Bl/6J mice across aging to date.
View Article and Find Full Text PDFCued threat conditioning is the most common preclinical model for emotional memory, which is dysregulated in anxiety disorders and post-traumatic stress disorder. Though women are twice as likely as men to develop these disorders, current knowledge of threat conditioning networks was established by studies that excluded female subjects. For unbiased investigation of sex differences in these networks, we quantified the neural activity marker c-fos across 112 brain regions in adult male and female mice after cued threat conditioning compared to naïve controls.
View Article and Find Full Text PDFHeightened aggression is characteristic of multiple neuropsychiatric disorders and can have various negative effects on patients, their families and the public. Recent studies in humans and animals have implicated brain reward circuits in aggression and suggest that, in subsets of aggressive individuals, domination of subordinate social targets is reinforcing. In this study, we showed that, in male mice, orexin neurons in the lateral hypothalamus activated a small population of glutamic acid decarboxylase 2 (GAD2)-expressing neurons in the lateral habenula (LHb) via orexin receptor 2 (OxR2) and that activation of these GAD2 neurons promoted male-male aggression and conditioned place preference for aggression-paired contexts.
View Article and Find Full Text PDFSocial isolation during the juvenile critical window is detrimental to proper functioning of the prefrontal cortex (PFC) and establishment of appropriate adult social behaviors. However, the specific circuits that undergo social experience-dependent maturation to regulate social behavior are poorly understood. We identify a specific activation pattern of parvalbumin-positive interneurons (PVIs) in dorsal-medial PFC (dmPFC) prior to an active bout, or a bout initiated by the focal mouse, but not during a passive bout when mice are explored by a stimulus mouse.
View Article and Find Full Text PDFPsychopharmacology (Berl)
January 2019
Rationale: Recovery from a traumatic experience requires extinction of cue-based fear responses, a process that is impaired in post-traumatic stress disorder. While studies suggest a link between fear behavioral flexibility and noradrenaline signaling, the role of specific receptors and brain regions in these effects is unclear.
Objectives: Here, we examine the role of prazosin, an α1-adrenergic receptor (α1-AR) antagonist, in auditory fear conditioning and extinction.
Fear conditioning is a form of associative learning that is fundamental to survival and involves potentiation of activity in excitatory projection neurons (PNs). Current models stipulate that the mechanisms underlying this process involve plasticity of PN synapses, which exhibit strengthening in response to fear conditioning. However, excitatory PNs are extensively modulated by a diverse array of GABAergic interneurons whose contributions to acquisition, storage, and expression of fear memory remain poorly understood.
View Article and Find Full Text PDFStimulus processing in fear conditioning is constrained by parvalbumin interneurons (PV-INs) through inhibition of principal excitatory neurons. However, the contributions of PV-IN microcircuits to input gating and long-term plasticity in the fear system remain unknown. Here we interrogate synaptic connections between afferent pathways, PV-INs, and principal excitatory neurons in the basolateral amygdala.
View Article and Find Full Text PDFThe transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) has been linked to multiple neurological and psychiatric disorders including schizophrenia, but its involvement in the pathophysiology of these disorders is unclear. Experiments in mice have revealed a set of developmentally-regulated cortical PGC-1α-dependent transcripts involved in calcium buffering (parvalbumin, PV), synchronous neurotransmitter release (synaptotagmin 2, Syt2; complexin 1, Cplx1) and axonal integrity (neurofilamaent heavy chain, Nefh). We measured the mRNA expression of PGC-1α and these transcripts in postmortem cortical tissue from control and schizophrenia patients and found a reduction in PGC-1α-dependent transcripts without a change in PGC-1α.
View Article and Find Full Text PDFUnlabelled: Circuit dysfunction in complex brain disorders such as schizophrenia and autism is caused by imbalances between inhibitory and excitatory synaptic transmission (I/E). Short-term plasticity differentially alters responses from excitatory and inhibitory synapses, causing the I/E ratio to change as a function of frequency. However, little is known about I/E ratio dynamics in complex brain disorders.
View Article and Find Full Text PDFAlterations in the expression and activity of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (ppargc1a or PGC-1α) have been reported in multiple movement disorders, yet it is unclear how a lack of PGC-1α impacts transcription and function of the cerebellum, a region with high PGC-1α expression. We show here that mice lacking PGC-1α exhibit ataxia in addition to the previously described deficits in motor coordination. Using q-RT-PCR in cerebellar homogenates from PGC-1α(-/-) mice, we measured expression of 37 microarray-identified transcripts upregulated by PGC-1α in SH-SY5Y neuroblastoma cells with neuroanatomical overlap with PGC-1α or parvalbumin (PV), a calcium buffer highly expressed by Purkinje cells.
View Article and Find Full Text PDFAccumulating evidence strongly implicates the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in the pathophysiology of multiple neurological disorders, but the downstream gene targets of PGC-1α in the brain have remained enigmatic. Previous data demonstrate that PGC-1α is primarily concentrated in inhibitory neurons and that PGC-1α is required for the expression of the interneuron-specific Ca(2+)-binding protein parvalbumin (PV) throughout the cortex. To identify other possible transcriptional targets of PGC-1α in neural tissue, we conducted a microarray on neuroblastoma cells overexpressing PGC-1α, mined results for genes with physiological relevance to interneurons, and measured cortical gene and protein expression of these genes in mice with underexpression and overexpression of PGC-1α.
View Article and Find Full Text PDFActivity-dependent brain-derived neurotrophic factor (BDNF) signaling through receptor tyrosine kinase B (TrkB) is required for cued fear memory consolidation and extinction. Although BDNF is primarily secreted from glutamatergic neurons, TrkB is expressed by other genetically defined cells whose contributions to the behavioral effects of BDNF remain poorly understood. Parvalbumin (PV)-positive interneurons, which are highly enriched in TrkB, are emerging as key regulators of fear memory expression.
View Article and Find Full Text PDFGlutamate transporters facilitate the buffering, clearance and cycling of glutamate and play an important role in maintaining synaptic and extrasynaptic glutamate levels. Alterations in glutamate transporter expression may lead to abnormal glutamate neurotransmission contributing to the pathophysiology of schizophrenia. In addition, alterations in the architecture of the superior temporal gyrus and hippocampus have been implicated in this illness, suggesting that synapses in these regions may be remodeled from a lifetime of severe mental illness and antipsychotic treatment.
View Article and Find Full Text PDFAccumulating evidence implicates the transcriptional coactivator peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) in the pathophysiology of Huntington Disease (HD). Adult PGC-1α (-/-) mice exhibit striatal neurodegeneration, and reductions in the expression of PGC-1α have been observed in striatum and muscle of HD patients as well as in animal models of the disease. However, it is unknown whether decreased expression of PGC-1α alone is sufficient to lead to the motor phenotype and striatal pathology characteristic of HD.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a transcriptional coactivator that regulates diverse aspects of energy metabolism in peripheral tissues. Mice deficient in PGC-1α have elevated metabolic rate and are resistant to diet-induced obesity. However, it remains unknown whether this alteration in energy balance is due to the action of PGC-1α in peripheral tissues or the central nervous system.
View Article and Find Full Text PDFThe transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) is a master regulator of metabolism in peripheral tissues, and it has been proposed that PGC-1alpha plays a similar role in the brain. Recent evidence suggests that PGC-1alpha is concentrated in GABAergic interneurons, so we investigated whether male and female PGC-1alpha -/- mice exhibit abnormalities in interneuron gene expression and/or function. We found a striking reduction in the expression of the Ca(2+)-binding protein parvalbumin (PV), but not other GABAergic markers, throughout the cerebrum in PGC-1alpha +/- and -/- mice.
View Article and Find Full Text PDFJ Clin Psychol Med Settings
September 2009
Children tend to overestimate their physical abilities, and that tendency is related to risk for unintentional injury. This study tested whether or not children estimate their physical ability differently when exposed to stimuli that were highly visually salient due to fluorescent coloring. Sixty-nine 6-year-olds judged physical ability to complete laboratory-based physical tasks.
View Article and Find Full Text PDF