Background: Globally the spread of invasive pests is being facilitated by increased human mobility and climate change. Simulation modelling can help assess biosecurity strategies for early detection and rapid response (EDRR), but has struggled to account for important factors in the invasion process, such as spatial and temporal variability in habitat suitability and connectivity; population dynamics; and multiple dispersal pathways. We developed a novel dynamic spatial network simulation approach based on spatial network theory that enables integration of a wider range of spatio-temporal factors than previous studies, calibrated it against extensive historical trapping data, and applied it to comprehensively analyse the EDRR strategy for Oriental fruit fly (Bactrocera dorsalis; OFF) in northern Australia.
View Article and Find Full Text PDFUnderstanding what makes a community vulnerable to invasion is integral to the successful management of invasive species. Our understanding of how characteristics of resident plant interactions, such as the network architecture of interactions, can affect the invasibility of plant communities is limited. Using a simulation model, we tested how successfully a new plant invader established in communities with different network architectures of species interactions.
View Article and Find Full Text PDF