Am J Respir Cell Mol Biol
October 2024
Endothelial cells (ECs) in the descending aorta are exposed to high laminar shear stress, and this supports an antiinflammatory phenotype. High laminar shear stress also induces flow-aligned cell elongation and front-rear polarity, but whether these are required for the antiinflammatory phenotype is unclear. Here, we showed that caveolin-1-rich microdomains polarize to the downstream end of ECs that are exposed to continuous high laminar flow.
View Article and Find Full Text PDFPulmonary alveolar proteinosis (PAP) is a life-threatening, rare lung syndrome for which there is no cure and no approved therapies. PAP is a disease of lipid accumulation characterized by alveolar macrophage foam cell formation. While much is known about the clinical presentation, there is a paucity of information regarding temporal changes in lipids throughout the course of disease.
View Article and Find Full Text PDFBackground And Objective: There is increasing interest in the role of lipids in processes that modulate lung fibrosis with evidence of lipid deposition in idiopathic pulmonary fibrosis (IPF) histological specimens. The aim of this study was to identify measurable markers of pulmonary lipid that may have utility as IPF biomarkers.
Study Design And Methods: IPF and control lung biopsy specimens were analysed using a unbiased lipidomic approach.
Background: Removal of circulating plasma low-density lipoprotein cholesterol (LDL-C) by the liver relies on efficient endocytosis and intracellular vesicle trafficking. Increasing the availability of hepatic LDL receptors (LDLRs) remains a major clinical target for reducing LDL-C levels. Here, we describe a novel role for RNF130 (ring finger containing protein 130) in regulating plasma membrane availability of LDLR.
View Article and Find Full Text PDFAutoantibodies to multiple cytokines have been identified and some, including antibodies against granulocyte-macrophage colony-stimulating factor (GM-CSF), have been associated with increased susceptibility to infection. High levels of GM-CSF autoantibodies that neutralize signaling cause autoimmune pulmonary alveolar proteinosis (aPAP), an ultrarare autoimmune disease characterized by accumulation of excess surfactant in the alveoli, leading to pulmonary insufficiency. Defective GM-CSF signaling leads to functional deficits in multiple cell types, including macrophages and neutrophils, with impaired phagocytosis and host immune responses against pulmonary and systemic infections.
View Article and Find Full Text PDFFXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lipidomic analyses, we show that FXR activation in mice or humans specifically reduces hepatic levels of mono- and polyunsaturated fatty acids (MUFA and PUFA).
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) have been demonstrated to influence numerous biological processes, being strongly implicated in the maintenance and physiological function of various tissues including the heart. The lncRNA OIP5-AS1 (/C) has been studied in several settings; however its role in cardiac pathologies remains mostly uncharacterized. Using a series of and methods, we demonstrate that OIP5-AS1 is regulated during cardiac development in rodent and human models and in disease settings in mice.
View Article and Find Full Text PDFThe effective storage of lipids in white adipose tissue (WAT) critically impacts whole body energy homeostasis. Many genes have been implicated in WAT lipid metabolism, including tripartite motif containing 28 (Trim28), a gene proposed to primarily influence adiposity via epigenetic mechanisms in embryonic development. However, in the current study we demonstrate that mice with deletion of Trim28 specifically in committed adipocytes, also develop obesity similar to global Trim28 deletion models, highlighting a post-developmental role for Trim28.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
February 2020
Objective: Atherosclerosis is a leading cause of death in developed countries. MicroRNAs act as fine-tuners of gene expression and have been shown to have important roles in the pathophysiology and progression of atherosclerosis. We, and others, previously demonstrated that microRNA-144 (miR-144) functions to post-transcriptionally regulate ABCA1 (ATP binding cassette transporter A1) and plasma HDL (high-density lipoprotein) cholesterol levels.
View Article and Find Full Text PDFDysregulation of lipid homeostasis is a precipitating event in the pathogenesis and progression of hepatosteatosis and metabolic syndrome. These conditions are highly prevalent in developed societies and currently have limited options for diagnostic and therapeutic intervention. Here, using a proteomic and lipidomic-wide systems genetic approach, we interrogated lipid regulatory networks in 107 genetically distinct mouse strains to reveal key insights into the control and network structure of mammalian lipid metabolism.
View Article and Find Full Text PDFPulmonary alveolar proteinosis (PAP) is a syndrome of reduced GM-CSF-dependent, macrophage-mediated surfactant clearance, dysfunctional foamy alveolar macrophages, alveolar surfactant accumulation, and hypoxemic respiratory failure for which the pathogenetic mechanism is unknown. Here, we examine the lipids accumulating in alveolar macrophages and surfactant to define the pathogenesis of PAP and evaluate a novel pharmacotherapeutic approach. In PAP patients, alveolar macrophages have a marked increase in cholesterol but only a minor increase in phospholipids, and pulmonary surfactant has an increase in the ratio of cholesterol to phospholipids.
View Article and Find Full Text PDFEndothelial cells transduce mechanical forces from blood flow into intracellular signals required for vascular homeostasis. Here we show that endothelial NOTCH1 is responsive to shear stress, and is necessary for the maintenance of junctional integrity, cell elongation, and suppression of proliferation, phenotypes induced by laminar shear stress. NOTCH1 receptor localizes downstream of flow and canonical NOTCH signaling scales with the magnitude of fluid shear stress.
View Article and Find Full Text PDFIdiopathic pulmonary alveolar proteinosis (PAP) is a rare lung disease characterized by accumulation of surfactant. Surfactant synthesis and secretion are restricted to epithelial type 2 (T2) pneumocytes (also called T2 cells). Clearance of surfactant is dependent upon T2 cells and macrophages.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
July 2016
Objective: In a recent article in Arteriosclerosis, Thrombosis, and Vascular Biology, it was reported that ATP-binding cassette transporter G1 (ABCG1) containing leucine at position 550 (ABCG1-L550) was localized to the plasma membrane, whereas ABCG1-P550 (proline at position 550) was intracellular. Because the published data on the subcellular localization of ABCG1 are controversial, we performed additional experiments to determine the importance of leucine or proline at amino acid 550.
Approach And Results: We transfected multiple cell lines (CHO-K1, Cos-7, and HEK293 [human embryonic kidney]) with untagged or FLAG-tagged ABCG1 containing either leucine or proline at position 550.
Cellular lipid requirements are achieved through a combination of biosynthesis and import programs. Using isotope tracer analysis, we show that type I interferon (IFN) signaling shifts the balance of these programs by decreasing synthesis and increasing import of cholesterol and long chain fatty acids. Genetically enforcing this metabolic shift in macrophages is sufficient to render mice resistant to viral challenge, demonstrating the importance of reprogramming the balance of these two metabolic pathways in vivo.
View Article and Find Full Text PDFIn addition to triacylglycerols, adipocytes contain a large reserve of unesterified cholesterol. During adipocyte lipolysis and cell death seen during severe obesity and weight loss, free fatty acids and cholesterol become available for uptake and processing by adipose tissue macrophages (ATMs). We hypothesize that ATMs become cholesterol enriched and participate in cholesterol clearance from adipose tissue.
View Article and Find Full Text PDFThe liver X receptors (LXRs) are transcriptional regulators of lipid homeostasis that also have potent anti-inflammatory effects. The molecular basis for their anti-inflammatory effects is incompletely understood, but has been proposed to involve the indirect tethering of LXRs to inflammatory gene promoters. Here we demonstrate that the ability of LXRs to repress inflammatory gene expression in cells and mice derives primarily from their ability to regulate lipid metabolism through transcriptional activation and can occur in the absence of SUMOylation.
View Article and Find Full Text PDFSpecific bile acids are potent signaling molecules that modulate metabolic pathways affecting lipid, glucose and bile acid homeostasis, and the microbiota. Bile acids are synthesized from cholesterol in the liver, and the key enzymes involved in bile acid synthesis (Cyp7a1, Cyp8b1) are regulated transcriptionally by the nuclear receptor FXR. We have identified an FXR-regulated pathway upstream of a transcriptional repressor that controls multiple bile acid metabolism genes.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
April 2015
Objective: To determine whether activation of farnesoid X receptor (FXR) alters cellular and plasma cholesterol homeostasis as a result of regulation of Srebp-2 and miR-33.
Approach And Results: Chromatin immunoprecipitation sequencing data identified an FXR response element within intron 10 of the Srebp-2 gene. Consistent with this observation, treatment of mice with FXR-specific agonists (GSK2324 or GW4064) rapidly increased hepatic levels of Srebp-2 mRNA, precursor sterol response element binding protein 2 (pSREBP-2) protein, and miR-33.
Many metabolic diseases, including atherosclerosis, type 2 diabetes, pulmonary alveolar proteinosis, and obesity, have a chronic inflammatory component involving both innate and adaptive immunity. Mice lacking the ATP-binding cassette transporter G1 (ABCG1) develop chronic inflammation in the lungs, which is associated with the lipid accumulation (cholesterol, cholesterol ester, and phospholipid) and cholesterol crystal deposition that are characteristic of atherosclerotic lesions and pulmonary alveolar proteinosis. In this article, we demonstrate that specific lipids, likely oxidized phospholipids and/or sterols, elicit a lung-specific immune response in Abcg1(-/-) mice.
View Article and Find Full Text PDF