This article seeks to evaluate the scientific landscape of the phytoremediation of mine tailings through a series of bibliometric and scientometric techniques. Phytoremediation has emerged as a sustainable approach to remediate metal-contaminated mine waste areas. A scientometric analysis of 913 publications indexed in Web of Science from 1999 to 2023 was conducted using CiteSpace.
View Article and Find Full Text PDFEnviron Geochem Health
December 2023
This article proposes a mathematical model to characterize phytoremediation processes in soils contaminated with heavy metals. In particular, the proposed model constructs characteristic curves for the concentrations of several metals (As, Cd, Cu, Fe, Pb, Sb, and Zn) in soils and plants based on the experimental data retrieved from several bibliographical sources comprising 305 vegetal species. The proposed model is an extension of previous models of characteristic curves in phytoremediation processes developed by Lam et al.
View Article and Find Full Text PDFEnviron Geochem Health
December 2023
Many vegetal species can accumulate great amounts of metallic elements in their tissues. For this reason, they are called metal hyperaccumulators. An indicator of great interest in environmental sciences is the bioconcentration factor because it is recognized for establishing the potential accumulation of chemicals in organisms.
View Article and Find Full Text PDFThis work is aimed to assess potential risk associated with the presence of metals and metalloids in soil at "Playa Las Petroleras" sector, located in Antofagasta (Chile). The zone under study has been affected by four oil spill events. This sector is located in an urban area by the sea.
View Article and Find Full Text PDFEnviron Geochem Health
June 2021
In this study, two amendments, poultry waste and ammonium nitrate, were evaluated to condition and stabilize a mine tailing and thus help the vegetation cover settle. Individually, ammonium nitrate was tested as a nitrogen source and chicken bone ash as a phosphate source. For this, laboratory tests were made on soil columns from the area to be remediated.
View Article and Find Full Text PDFInt J Environ Res Public Health
June 2020
For centuries, Chile has been a territory with significant mining activity, resulting in associated social benefits and impacts. One of the main challenges the country faces today is the presence of a great number of mine tailings containing heavy metals, such as Cu, Cr, Ni, Zn, Pb, As, Cd, and Fe, which make up a potential risk for the population. This study is intended to develop a methodology for determining tailings requiring urgent treatment in Chile, based on risks associated with heavy metals.
View Article and Find Full Text PDFInt J Environ Res Public Health
April 2020
Copper mining, the central axis of Chile's economic development, produces a large number of tailings, which become a potential environmental risk. This study aims to evaluate the mechanical properties resulting from the making of Portland cement mixtures with tailings as aggregates so that they can be eventually used in paving stones for building inactive tailings dams. Tailings coming from two dams at a concentration plant located in Taltal (Chile) were used.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2016
This work shows the results obtained on a copper mine tailing in the Antofagasta Region, Chile. The tailing was classified as saline-sodic with high concentrations of metals, especially Cu and Fe, with pH 8.4.
View Article and Find Full Text PDF