Publications by authors named "Elizabeth J Joslin"

Transactivation of the epidermal growth factor receptor (EGFR) is thought to be a process by which a variety of cellular inputs can be integrated into a single signaling pathway through either stimulated proteolysis (shedding) of membrane-anchored EGFR ligands or by modification of the activity of the EGFR. As a first step towards building a predictive model of the EGFR transactivation circuit, we quantitatively defined how signals from multiple agonists were integrated both upstream and downstream of the EGFR to regulate extracellular signal regulated kinase (ERK) activity in human mammary epithelial cells. By using a "non-binding" reporter of ligand shedding, we found that transactivation triggers a positive feedback loop from ERK back to the EGFR such that ligand shedding drives EGFR-stimulated ERK that in turn drives further ligand shedding.

View Article and Find Full Text PDF

EGF family ligands are synthesized as membrane-anchored precursors whose proteolytic release yields mature diffusible factors that can activate cell surface receptors in autocrine or paracrine mode. Expression of these ligands is altered in pathological states and in physiological processes, such as development and tissue regeneration. Despite the widely documented biological importance of autocrine EGF signaling, quantitative relationships between protease-mediated ligand release and consequent cell behavior have not been rigorously investigated.

View Article and Find Full Text PDF

Cell-culture assays are routinely used to analyze autocrine signaling systems, but quantitative experiments are rarely possible. To enable the quantitative design and analysis of experiments with autocrine cells, we develop a biophysical theory of ligand accumulation in cell-culture assays. Our theory predicts the ligand concentration as a function of time and measurable parameters of autocrine cells and cell-culture experiments.

View Article and Find Full Text PDF