Conjugated polymer nanoparticles (CPNs or Pdots) have become increasingly popular fluorophores for multimodal applications that combine imaging with phototherapeutic effects. Reports of CPNs in photodynamic therapy applications typically focus on their ability to generate singlet oxygen. Alternatively, CPN excited states can interact with oxygen to form superoxide radical anion and a CPN-based hole polaron, both of which can have deleterious effects on fluorescence properties.
View Article and Find Full Text PDFConjugated polymer nanoparticles (CPNs or Pdots) are used to sensitize the photorelease reaction of a BODIPY photoremovable protecting group. Sensitization yields effective values of - the product of the extinction coefficient at the irradiation wavelength and the photorelease quantum yield - that are more than 60-fold greater than those measured upon direct excitation.
View Article and Find Full Text PDFRhodamine spirolactams (RSLs) have recently emerged as popular fluorescent pH probes due to their fluorescence turn-on capability and ease of functionalization at the spirolactam nitrogen. Design of RSLs is often driven by biological targeting or compatibility concerns, rather than the pH sensitivity of the probe, and the relationship between RSL structure and pK is not well understood. To elucidate the relationship between pK values and the properties of substituents attached to the spirolactam nitrogen, a series of 19 aniline-derived RSLs is presented.
View Article and Find Full Text PDFThe ability to modulate protein function through minimal perturbations to amino acid structure represents an ideal mechanism to engineer optimized proteins. Due to the novel spectroscopic properties of green fluorescent protein, it has found widespread application as a reporter protein throughout the fields of biology and chemistry. Using site-specific amino acid mutagenesis, we have incorporated various fluorotyrosine residues directly into the fluorophore of the protein, altering the fluorescence and shifting the pKa of the phenolic proton associated with the fluorophore.
View Article and Find Full Text PDFConjugated polymer nanoparticles doped with a reverse photochromic dye exhibit highly quenched fluorescence that can be reversibly activated by controlling the form of the photochrome with visible light.
View Article and Find Full Text PDFThe emission of conjugated polymer nanoparticles (CPNs or Pdots) is often tailored for specific uses by functionalizing CPNs with dyes that act as fluorescence resonance energy transfer (FRET) acceptors. A number of dye functionalization methods for CPNs have been developed, ranging from simple noncovalent doping to covalent attachment. We seek to develop guidelines for when noncovalent doping is acceptable and when covalent attachment is necessary to achieve the desired result.
View Article and Find Full Text PDFFluorescent turn-on probes based on a rhodamine spirolactam (RSL) structure have recently become a popular means of detecting pH, metal ions, and other analytes of interest. RSLs are colorless and non-fluorescent until the target analyte induces opening of the spirocyclic ring system, revealing the fully conjugated and highly fluorescent rhodamine dye. Among RSLs opened by acid, we have observed wide variation in the kinetics of the fluorescence turn-on process such that some probes would not be usable in situations where a rapid reading is desired or the pH fluctuates temporally.
View Article and Find Full Text PDFWe present fluorescence studies of quenching behavior in photoaddressable azobenzene-substituted derivatives of the fluorescent conjugated polymer poly(p-phenylenevinylene) (PPV). The azobenzene side chains partially quench the PPV fluorescence, and we have shown previously that the quenching efficiency is greater when the azobenzene side chains are cis than when they are trans. This effect provides a photoaddressable means of modulating the fluorescence intensity of PPV derivatives.
View Article and Find Full Text PDFMain chain polymeric radicals from several acrylic polymers, produced by laser flash photolysis at 248 nm in liquid solution, have been studied using direct detection time-resolved electron paramagnetic resonance (TREPR) spectroscopy at 9.5 GHz. Highly isotactic poly(methyl methacrylate) (i-PMMA) shows a sharp, well-resolved spectrum at about 95 degrees C.
View Article and Find Full Text PDFX-band time-resolved electron paramagnetic resonance (TREPR) spectra of three flexible biradicals of varying chain length and structure were obtained in liquid and supercritical carbon dioxide (CO2) solutions and compared to conventional solvents. For C16 acyl-alkyl biradical 1a, an average spin exchange interaction between the radical centers, J(avg), was obtained by spectral simulation using a simple model for spin-correlated radical pairs (SCRPs) and a small amount of T2 relaxation from a previously established J modulation mechanism. A large solvent effect on J(avg) was observed for the first time, varying by almost 1 order of magnitude from CO2 (J(avg) = -120 +/- 10 MHz) to heavy mineral oil (-11 +/- 3 MHz) for 1a.
View Article and Find Full Text PDFWe report fluorescence studies of phototriggered changes in spectral position and shape for two azobenzene-functionalized poly(p-phenylenevinylene) derivatives, poly(2-methoxy-5-(4-phenylazophenyl-4'-(1,10-dioxydecyl))-1,4-phenylenevinylene) (MPA-10-PPV) and poly(2-hexyloxy-5-(4-phenylazophenyl-4'-(1,10-dioxydecyl))-1,4-phenylenevinylene) (HPA-10-PPV). Upon trans --> cis azobenzene photoisomerization, small (ca. 1 nm) blue shifts in spectral position are observed for MPA-10-PPV in 100% toluene, a good solvent for this polymer.
View Article and Find Full Text PDFReverse transcription of the HIV-1 RNA genome involves several complex nucleic acid rearrangement steps that are catalyzed by the HIV-1 nucleocapsid protein (NC), including for example, the annealing of the transactivation response (TAR) region of the viral RNA to the complementary region (TAR DNA) in minus-strand strong-stop DNA. We report herein single-molecule fluorescence resonance energy transfer measurements on single immobilized TAR DNA hairpins and hairpin mutants complexed with NC (i.e.
View Article and Find Full Text PDFReverse transcription of the HIV-1 genome is a complex multi-step process. HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone protein that has been shown to greatly facilitate the nucleic acid rearrangements that precede the minus-strand transfer step in reverse transcription. NC destabilizes the highly structured transactivation response region (TAR) present in the R region of the RNA genome, as well as a complementary hairpin structure ("TAR DNA") at the 3'-end of the newly synthesized minus-strand strong-stop DNA ((-) SSDNA).
View Article and Find Full Text PDF