The serine/threonine kinase Pim-1 directs selected signaling events that promote cell growth and survival and is overexpressed in diverse human cancers. Pim-1 expression is tightly controlled through multiple mechanisms, including regulation of mRNA turnover. In several cultured cell models, mitogenic stimulation rapidly induced and stabilized PIM1 mRNA, however, vigorous destabilization 4-6 hours later helped restore basal expression levels.
View Article and Find Full Text PDFThe fluorescent base analogue 2-aminopurine (2-AP) is commonly used to study specific conformational and protein binding events involving nucleic acids. Here, combinations of steady-state and time-resolved fluorescence spectroscopy of 2-AP were employed to monitor conformational transitions within a model hairpin RNA from diverse structural perspectives. RNA substrates adopting stable, unambiguous secondary structures were labeled with 2-AP at an unpaired base, within the loop, or inside the base-paired stem.
View Article and Find Full Text PDFThe RNA-binding factor HuR is a ubiquitously expressed member of the Hu protein family that binds and stabilizes mRNAs containing AU-rich elements (AREs). Hu proteins share a common domain organization of two tandemly arrayed RNA recognition motifs (RRMs) near the N terminus, followed by a basic hinge domain and a third RRM near the C terminus. In this study, we engineered recombinant wild-type and mutant HuR proteins lacking affinity tags to characterize their ARE-binding properties.
View Article and Find Full Text PDFAssociation of tristetraprolin (TTP) with mRNAs containing selected AU-rich mRNA-destabilizing elements (AREs) initiates rapid cytoplasmic degradation of these transcripts. The RNA-binding activity of TTP is mediated by an internal tandem zinc finger domain that preferentially recognizes U-rich RNA ligands containing adjacent UUAU half-sites and is accompanied by conformational changes within the peptide. Here, we have used analogues of the TTP RNA-binding domain containing specific tryptophan substitutions to probe the Zn2+ and RNA substrate dependence of conformational events within individual zinc fingers.
View Article and Find Full Text PDF