Publications by authors named "Elizabeth I Carson"

PlsY is a recently discovered acyltransferase that executes an essential step in membrane phospholipid biosynthesis in Gram- positive bacteria. By using a bioisosteric replacement approach to generate substrate-based inhibitors of PlsY as potential novel antibacterial agents, a series of stabilized acyl phosphate mimetics, including acyl phosphonates, acyl alpha,alpha-difluoromethyl phosphonates, acyl phosphoramides, reverse amide phosphonates, acyl sulfamates, and acyl sulfamides were designed and synthesized. Several acyl phosphonates, phosphoramides, and sulfamates were identified as inhibitors of PlsY from Streptococcus pneumoniae and Bacillus anthracis.

View Article and Find Full Text PDF

Objectives: Nitrofuranylamides (NFAs) are nitroaromatic compounds that have recently been discovered and have potent anti-tuberculosis (TB) activity. A foundational study was performed to evaluate whether this class of agents possesses microbiological properties suitable for future antimycobacterial therapy.

Methods: Five representative compounds of the NFA series were evaluated by standard microbiological assays to determine MICs, MBCs, activity against anaerobic non-replicating persistent Mycobacterium tuberculosis, post-antibiotic effects (PAEs), antibiotic synergy and the basis for resistance.

View Article and Find Full Text PDF

In order to expand the structure-activity relationship of tetramic acid molecules with structural similarity to the antibiotic reutericyclin, 22 compounds were synthesized and tested against a panel of clinically relevant bacteria. Key structural changes on the tetramic acid core affected antibacterial activity. Various compounds in the N-alkyl 3-acetyltetramic acid series exhibited good activity against Gram-positive bacterial pathogens including Bacillus anthracis, Propionibacterium acnes, Enterococcus faecalis, and both Methicillin-sensitive and -resistant Staphylococcus aureus.

View Article and Find Full Text PDF

A 1000-member uridinyl branched peptide library was synthesized on PS-DES support using IRORI technology. High-throughput screening of this library for anti-tuberculosis activity identified several members with a MIC(90) value of 12.5 microg/mL.

View Article and Find Full Text PDF