In theory, the same sea-ice models could be used for both research and operations, but in practice, differences in scientific and software requirements and computational and human resources complicate the matter. Although sea-ice modeling tools developed for climate studies and other research applications produce output of interest to operational forecast users, such as ice motion, convergence, and internal ice pressure, the relevant spatial and temporal scales may not be sufficiently resolved. For instance, sea-ice research codes are typically run with horizontal resolution of more than 3 km, while mariners need information on scales less than 300 m.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2018
A new collaborative organization for sea-ice model development, the CICE Consortium, has devised quality control procedures to maintain the integrity of its numerical codes' physical representations, enabling broad participation from the scientific community in the Consortium's open software development environment. Using output from five coupled and uncoupled configurations of the Los Alamos Sea Ice Model, CICE, we formulate quality control methods that exploit common statistical properties of sea-ice thickness, and test for significant changes in model results in a computationally efficient manner. New additions and changes to CICE are graded into four categories, ranging from bit-for-bit amendments to significant, answer-changing upgrades.
View Article and Find Full Text PDF