Age-associated bone marrow changes include myeloid skewing and mutations that lead to clonal hematopoiesis. Molecular mechanisms for these events are ill defined, but decreased expression of Irf8/Icsbp (interferon regulatory factor 8/interferon consensus sequence binding protein) in aging hematopoietic stem cells may contribute. Irf8 functions as a leukemia suppressor for chronic myeloid leukemia, and young Irf8 mice have neutrophilia with progression to acute myeloid leukemia (AML) with aging.
View Article and Find Full Text PDFChronic Myeloid Leukemia (CML) is characterized by translocations between chromosomes 9 and 22, resulting in expression of Bcr-abl oncogenes. Although the clinical course of CML was revolutionized by development of Bcr-abl-directed tyrosine kinase inhibitors (TKIs), CML is not cured by these agents. Specifically, the majority of subjects relapsed in clinical trials attempting TKI discontinuation, suggesting persistence of leukemia stem cells (LSCs) even in molecular remission.
View Article and Find Full Text PDFIcsbp/Irf8 is an interferon regulatory transcription factor that functions as a suppressor of myeloid leukemias. Consistent with this activity, Icsbp represses a set of genes encoding proteins that promote cell proliferation/survival. One such gene encodes Gas2, a calpain inhibitor.
View Article and Find Full Text PDFEmergency granulopoiesis occurs in response to infectious or inflammatory challenge and is a component of the innate immune response. Some molecular events involved in initiating emergency granulopoiesis are known, but termination of this process is less well defined. In this study, we found that the interferon consensus sequence binding protein (Icsbp/Irf8) was required to terminate emergency granulopoiesis.
View Article and Find Full Text PDFEmergency granulopoiesis is a component of the innate immune response that is induced in response to infectious or inflammatory challenge. It is characterized by the rapid expansion and differentiation of granulocyte/monocyte progenitor (GMP) populations, which is due in part to a shortened S-phase of the cell cycle. We found that IRF8 (also known as ICSBP), an interferon regulatory transcription factor that activates phagocyte effector genes during the innate immune response, activates the gene encoding Fanconi C (Fancc) in murine myeloid progenitor cells.
View Article and Find Full Text PDFIcsbp is an interferon regulatory transcription factor with leukemia suppressor activity. In previous studies, we identified the gene encoding Fas-associated phosphatase 1 (Fap1; the PTPN13 gene) as an Icsbp target. In the current study, we determine that repression of PTPN13 by Icsbp requires cooperation with Tel and histone deacetylase 3 (Hdac3).
View Article and Find Full Text PDFThe effects of prolactin (PRL) during the pathogenesis of breast cancer are mediated in part though Stat5 activity enhanced by its interaction with its transcriptional inducer, the prolyl isomerase cyclophilin B (CypB). We have demonstrated that knockdown of CypB decreases cell growth, proliferation, and migration, and CypB expression is associated with malignant progression of breast cancer. In this study, we examined the effect of CypB knockdown on PRL signaling in breast cancer cells.
View Article and Find Full Text PDFThe interferon consensus sequence binding protein (ICSBP) is an interferon regulatory transcription factor with leukemia-suppressor activity. ICSBP regulates genes that are involved in phagocyte function, proliferation, and apoptosis. In murine models ICSBP deficiency results in a myeloproliferative disorder (MPD) with increased mature neutrophils.
View Article and Find Full Text PDFToxoplasma gondii infection triggers host microtubule rearrangement and organelle recruitment around the parasite vacuole. Factors affecting initial stages of microtubule remodeling are unknown. To illuminate the mechanism, we tested the hypothesis that the parasite actively remodels host microtubules.
View Article and Find Full Text PDFMol Phylogenet Evol
September 2007
Coatomer coated (COPI) vesicles play a pivotal role for multiple membrane trafficking steps throughout the eukaryotic cell. Our focus is on betaCOP, one of the most well known components of the COPI multi-protein complex. Amino acid differences in betaCOP may dictate functional divergence across species during the course of evolution, especially with regards to the evolutionary pressures on obligate intracellular parasites.
View Article and Find Full Text PDF