Publications by authors named "Elizabeth Hardiman"

Ferulic acid is a renewable chemical found in lignocellulose from grasses such as wheat straw and sugarcane. Pseudomonas putida is able to liberate and metabolize ferulic acid from plant biomass. Deletion of the hydroxycinnamoyl-CoA hydratase-lyase gene (ech) produced a strain of P.

View Article and Find Full Text PDF

The aromatic polymer lignin represents a possible renewable source of aromatic chemicals, if biocatalytic routes for lignin breakdown can be developed. The availability of a genome sequence for Rhodococcus jostii RHA1, a bacterium that breaks down lignin, has allowed the application of a targeted pathway engineering strategy to lignin breakdown to produce vanillin, a valuable food/flavor chemical. A gene deletion strain of R.

View Article and Find Full Text PDF

Lignin is a heterogeneous aromatic polymer found as 10-35% of lignocellulose, found in plant cell walls. The bio-conversion of plant lignocellulose to glucose is an important part of second generation biofuel production, but the resistance of lignin to breakdown is a major obstacle in this process, hence there is considerable interest in the microbial breakdown of lignin. White-rot fungi are known to break down lignin with the aid of extracellular peroxidase and laccase enzymes.

View Article and Find Full Text PDF

Rhodococcus jostii RHA1, a polychlorinated biphenyl-degrading soil bacterium whose genome has been sequenced, shows lignin degrading activity in two recently developed spectrophotometric assays. Bioinformatic analysis reveals two unannotated peroxidase genes present in the genome of R. jostii RHA1 with sequence similarity to open reading frames in other lignin-degrading microbes.

View Article and Find Full Text PDF

The microbial degradation of lignin has been well studied in white-rot and brown-rot fungi, but is much less well studied in bacteria. Recent published work suggests that a range of soil bacteria, often aromatic-degrading bacteria, are able to break down lignin. The enzymology of bacterial lignin breakdown is currently not well understood, but extracellular peroxidase and laccase enzymes appear to be involved.

View Article and Find Full Text PDF

Characteristics that would make enzymes more desirable for industrial applications can be improved using directed evolution. We developed a directed evolution technique called random drift mutagenesis (RNDM). Mutant populations are screened and all functional mutants are collected and put forward into the next round of mutagenesis and screening.

View Article and Find Full Text PDF

Flow cytometry (FCM) is a technique for counting, examining and sorting microscopic particles suspended in a stream of fluid. It uses the principles of light scattering, light excitation and the emission from fluorescent molecules to generate specific multiparameter data from particles and cells. The cells are hydrodynamically focussed in a sheath solution before being intercepted by a focused light source provided by a laser.

View Article and Find Full Text PDF