Toxicity of exhaust from combustion of petroleum diesel (B0), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM(2.5)) concentrations of 50, 150, or 500 μg/m(3).
View Article and Find Full Text PDFCytokine profiling of local lymph node responses has been proposed as a simple test to identify chemicals, such as low molecular weight diisocyanates, that pose a significant risk of occupational asthma. Previously, we reported cytokine messenger RNA (mRNA) profiles for dinitrochlorobenzene (DNCB) and six isocyanates: toluene diisocyanate, diphenylmethane-4,4'-diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, isophorone diisocyanate, p-tolyl(mono)isocyanate, and meta-tetramethylene xylene diisocyanate. The present study was conducted to test the hypothesis that relative differences in the cytokine profile are predictive of relative differences in total serum immunoglobulin (Ig) E and respiratory responses to methacholine (Mch) following dermal exposure to the chemicals.
View Article and Find Full Text PDFThe immunosuppressive effects of exposure to ultraviolet radiation (UVR) are well known and the underlying mechanisms extensively studied. The suppression of Th1 appears to account for UVR suppression of contact hypersensitivity and delayed-type hypersensitivity responses and increased susceptibility to certain infections and tumor development. The underlying mechanisms suggest Th2-mediated responses associated with immediate-type hypersensitivity and allergic lung disease should be unchanged or possibly enhanced by UVR.
View Article and Find Full Text PDFExposure to low molecular weight (LMW) chemicals contributes to both dermal and respiratory sensitization and is an important occupational health problem. Our goal was to establish an in vivo murine model for hazard identification of LMW chemicals that have the potential to induce respiratory hypersensitivity (RH). We used a dermal sensitization protocol followed by a respiratory challenge with the evaluation of endpoints typically associated with RH in human disease.
View Article and Find Full Text PDF