Publications by authors named "Elizabeth Gizewski"

While screening off-target effects of rigid ()-methanocarba-adenosine 5'-methylamides as A adenosine receptor (AR) agonists, we discovered μM binding hits at the δ-opioid receptor (DOR) and translocator protein (TSPO). In an effort to increase OR and decrease AR affinity by structure activity analysis of this series, antagonist activity at κ-(K)OR appeared in 5'-esters (ethyl and propyl ), which retained TSPO interaction (μM). 7-Deaza modification of C2-(arylethynyl)-5'-esters but not 4'-truncation enhanced KOR affinity (MRS7299 and , ≈ 40 nM), revealed μ-OR and DOR binding, and reduced AR affinity.

View Article and Find Full Text PDF

A pyrazolo[4,3-][1,2,4]triazolo[1,5-]pyrimidin-5-amine antagonist of the A adenosine receptor (AR) was functionalized as amine congeners, fluorescent conjugates and a sulfonate, and the AAR binding modes were predicted computationally. The optimal -butyl spacer was incorporated into the following AAR-selective (, nM) conjugates: BODIPY630/650 derivative (MRS7396, 24.6) and AlexaFluor488 derivative (MRS7416, 30.

View Article and Find Full Text PDF

Activity of the A adenosine receptor (AR) allosteric modulators LUF6000 (2-cyclohexyl-N-(3,4-dichlorophenyl)-1H-imidazo [4,5-c]quinolin-4-amine) and LUF6096 (N-{2-[(3,4-dichlorophenyl)amino]quinolin-4-yl}cyclohexanecarbox-amide) was compared at four AAR species homologs used in preclinical drug development. In guanosine 5'-[γ-[S]thio]triphosphate ([S]GTPγS) binding assays with cell membranes isolated from human embryonic kidney cells stably expressing recombinant AARs, both modulators substantially enhanced agonist efficacy at human, dog, and rabbit AARs but provided only weak activity at mouse AARs. For human, dog, and rabbit, both modulators increased the maximal efficacy of the AAR agonist 2-chloro-N -(3-iodobenzyl)adenosine-5'-N-methylcarboxamide as well as adenosine > 2-fold, while slightly reducing potency in human and dog.

View Article and Find Full Text PDF

We have repurposed (N)-methanocarba adenosine derivatives (A adenosine receptor (AR) agonists) to enhance radioligand binding allosterically at the human dopamine (DA) transporter (DAT) and inhibit DA uptake. We extended the structure-activity relationship of this series with small N-alkyl substitution, 5'-esters, deaza modifications of adenine, and ribose restored in place of methanocarba. C2-(5-Halothien-2-yl)-ethynyl 5'-methyl 9 (MRS7292) and 5'-ethyl 10 (MRS7232) esters enhanced binding at DAT (EC ∼ 35 nM) and at the norepinephrine transporter (NET).

View Article and Find Full Text PDF

Small mammals have the ability to enter torpor, a hypothermic, hypometabolic state, allowing impressive energy conservation. Administration of adenosine or adenosine 5'-monophosphate (AMP) can trigger a hypothermic, torpor-like state. We investigated the mechanisms for hypothermia using telemetric monitoring of body temperature in wild type and receptor knock out (Adora1, Adora3) mice.

View Article and Find Full Text PDF

Purine (N)-methanocarba-5'-N-alkyluronamidoriboside A3 adenosine receptor (A3AR) agonists lacking an exocyclic amine resulted from an unexpected reaction during a Sonogashira coupling and subsequent aminolysis. Because the initial C6-Me and C6-styryl derivatives had unexpectedly high A3AR affinity, other rigid nucleoside analogues lacking an exocyclic amine were prepared. Of these, the C6-Me-(2-phenylethynyl) and C2-(5-chlorothienylethynyl) analogues were particularly potent, with human A3AR Ki values of 6 and 42 nM, respectively.

View Article and Find Full Text PDF

2-Arylethynyl derivatives of (N)-methanocarba adenosine 5'-uronamides are selective AAR (adenosine receptor) agonists. Here we substitute a 1,2,3-triazol-1-yl linker in place of the rigid, linear ethynyl group to eliminate its potential metabolic liability. Docking of nucleosides containing possible short linker moieties at the adenine C2 position using a hybrid molecular model of the AAR (based on the AAR agonist-bound structure) correctly predicted that a triazole would maintain the AAR selectivity, due to its ability to fit a narrow cleft in the receptor.

View Article and Find Full Text PDF

Substitution of rigidified A3 adenosine receptor (AR) agonists with a 2-((5-chlorothiophen-2-yl)ethynyl) or a 2-(4-(5-chlorothiophen-2-yl)-1H-1,2,3-triazol-1-yl) group provides prolonged protection in a model of chronic neuropathic pain. These agonists contain a bicyclo[3.1.

View Article and Find Full Text PDF

(N)-Methanocarba adenosine 5'-methyluronamides containing 2-arylethynyl groups were synthesized as A3 adenosine receptor (AR) agonists and screened in vivo (po) for reduction of neuropathic pain. A small N(6)-methyl group maintained binding affinity, with human > mouse A3AR and MW < 500 and other favorable physicochemical properties. Emax (maximal efficacy in a mouse chronic constriction injury pain model) of previously characterized A3AR agonist, 2-(3,4-difluorophenylethynyl)-N(6)-(3-chlorobenzyl) derivative 6a, MRS5698, was surpassed.

View Article and Find Full Text PDF

(N)-Methanocarba(bicyclo[3.1.0]hexane)adenosine derivatives were probed for sites of charged sulfonate substitution, which precludes diffusion across biological membranes, e.

View Article and Find Full Text PDF

Various fluorescent nucleoside agonists of the A3 adenosine receptor (AR) were compared as high affinity probes using radioligands and flow cytometry (FCM). They contained a fluorophore linked through the C2 or N(6) position and rigid A3AR-enhancing (N)-methanocarba modification. A hydrophobic C2-(1-pyrenyl) derivative MRS5704 bound nonselectively.

View Article and Find Full Text PDF

G protein coupled receptors play crucial roles in mediating cellular responses to external stimuli, and increasing evidence suggests that they function as multiple units comprising homo/heterodimers and hetero-oligomers. Adenosine and β-adrenergic receptors are co-expressed in numerous tissues and mediate important cellular responses to the autocoid adenosine and sympathetic stimulation, respectively. The present study was undertaken to examine whether adenosine A1ARs heterodimerize with β1- and/or β2-adrenergic receptors (β1R and β2R), and whether such interactions lead to functional consequences.

View Article and Find Full Text PDF

(N)-Methanocarba adenosine 5'-methyluronamides containing known A(3) AR (adenosine receptor)-enhancing modifications, i.e., 2-(arylethynyl)adenine and N(6)-methyl or N(6)-(3-substituted-benzyl), were nanomolar full agonists of human (h) A(3)AR and highly selective (K(i) ∼0.

View Article and Find Full Text PDF

Background: When stimulated by small molecular agonists, the A3 adenosine receptor (AR) mediates cardioprotective effects without inducing detrimental hemodynamic side effects. We have examined pharmacologically the protective properties of a multivalent dendrimeric conjugate of a nucleoside as a selective multivalent agonist for the mouse A3AR.

Results: A PAMAM dendrimer fully substituted by click chemistry on its peripheral groups with 64 moieties of a nucleoside agonist was shown to be potent and selective in binding to the mouse A3AR and effective in cardioprotection in an isolated mouse heart model of ischemia/reperfusion (I/R) injury.

View Article and Find Full Text PDF

The formation of adenosine dampens inflammation by inhibiting most cells of the immune system. Among its actions on neutrophils, adenosine suppresses superoxide generation and regulates chemotactic activity. To date, most evidence implicates the G(s) protein-coupled A(2A) adenosine receptor (AR) as the primary AR subtype responsible for mediating the actions of adenosine on neutrophils by stimulating cAMP production.

View Article and Find Full Text PDF

Adenosine is released from injured or hypoxic tissues where it exerts numerous anti-inflammatory effects including suppression of neutrophil functions. Although most previous work has implicated the A(2A)AR, we have recently shown that selective activation of the abundantly expressed A(3)AR inhibits neutrophil superoxide production and chemotaxis providing a potential mechanistic explanation for the efficacy of A(3)AR agonists in experimental animal models of inflammation. In this study, we hypothesized that the A(3)AR suppresses neutrophil functions by inhibiting the monomeric GTPase Rac, a central regulator of chemokine-directed neutrophil migration and superoxide production.

View Article and Find Full Text PDF

A recently reported selective agonist of the human A(3) adenosine receptor (hA(3)AR), MRS5127 (1'R,2'R,3'S,4'R,5'S)-4'-[2-chloro-6-(3-iodobenzylamino)-purine]-2',3'-O-dihydroxy-bicyclo-[3.1.0]hexane, was radioiodinated and characterized pharmacologically.

View Article and Find Full Text PDF

Adenosine is generated during tissue hypoxia and stress, which reduces inflammation by suppressing the activity of most immune cells. Among its various actions, adenosine suppresses the production of proinflammatory cytokines including tumor necrosis factor (TNF)-alpha, through the cAMP-elevating A(2A) adenosine receptor (AR) subtype. In this study, we examined the signaling mechanisms by which A(2A)AR activation inhibits TNF-alpha production in thioglycollate-elicited mouse peritoneal macrophages.

View Article and Find Full Text PDF

We have cloned and pharmacologically characterized the A(2B) adenosine receptor (AR) from the dog, rabbit, and mouse. The full coding regions of the dog and mouse A(2B)AR were obtained by reverse transcriptase-polymerase chain reaction, and the rabbit A(2B)AR cDNA was obtained by screening a rabbit brain cDNA library. It is noteworthy that an additional clone was isolated by library screening that was identical in sequence to the full-length rabbit A(2B)AR, with the exception of a 27-base pair deletion in the region encoding amino acids 103 to 111 (A(2B)AR(103-111)).

View Article and Find Full Text PDF

2-Chloro-5'-N-methylcarboxamidoadenosine analogues containing the (N)-methanocarba (bicyclo[3.1.0]hexane) ring system as a ribose substitute display increased selectivity as agonists of the human A(3) adenosine receptor (AR).

View Article and Find Full Text PDF