Toxoplasma gondii motility is powered by the myosin XIV motor complex, which consists of the myosin XIV heavy chain (MyoA), the myosin light chain (MLC1), GAP45, and GAP50, the membrane anchor of the complex. MyoA, MLC1, and GAP45 are initially assembled into a soluble complex, which then associates with GAP50, an integral membrane protein of the parasite inner membrane complex. While all proteins in the myosin XIV motor complex are essential for parasite survival, the specific role of GAP45 remains unclear.
View Article and Find Full Text PDFA bystander effect typically refers to the death, altered growth or damage of cells that have not directly received chemotherapy or irradiation. Cancer cells derived from solid tumors readily undergo senescence in response to chemotherapeutic agents, prompting us to test for the existence of a senescence bystander effect. MCF-7 breast cancer cells were acutely exposed to Adriamycin to trigger senescence.
View Article and Find Full Text PDFApicomplexan parasites exhibit a unique form of substrate-dependent motility, gliding motility, which is essential during their invasion of host cells and during their spread between host cells. This process is dependent on actin filaments and myosin that are both located between the plasma membrane and two underlying membranes of the inner membrane complex. We have identified a protein complex in the apicomplexan parasite Toxoplasma gondii that contains the class XIV myosin required for gliding motility, TgMyoA, its associated light chain, TgMLC1, and two novel proteins, TgGAP45 and TgGAP50.
View Article and Find Full Text PDFMembrane skeletons play an important role in the maintenance of cell shape and integrity in many cell types. In the protozoan parasite Toxoplasma gondii this function is performed by the subpellicular network, a resilient structure composed of tightly interwoven 10-nm filaments. We report here that this network is assembled at an early stage in the development of daughter parasites.
View Article and Find Full Text PDF