Activating mutations of the leucine-rich repeat kinase 2 () gene are associated with Parkinson disease (PD), prompting development of LRRK2 inhibitors as potential treatment for PD. However, kidney safety concerns have surfaced from LRRK2 knockout (KO) mice and rats and from repeat-dose studies in rodents administered LRRK2 inhibitors. To support drug development of this therapeutic target, we conducted a study of 26 weeks' duration in 2-month-old wild-type and LRRK2 KO Long-Evans Hooded rats to systematically examine the performance of urinary safety biomarkers and to characterize the nature of the morphological changes in the kidneys by light microscopy and by ultrastructural evaluation.
View Article and Find Full Text PDFThe ability to monitor for general drug-induced tissue injury (DITI) or systemic inflammation in any tissue using blood-based accessible biomarkers would provide a valuable tool in early exploratory animal studies to understand potential drug liabilities. Here we describe the evaluation of 4 biomarkers of tissue remodeling and inflammation (α2-macroglobulin [A2M], α1-acid glycoprotein [AGP], neutrophil gelatinase-associated lipocalin [NGAL], and tissue inhibitor of metalloproteinases [TIMP-1]) as well as the traditional serum parameter albumin as potential blood-based biomarkers of DITI and systemic inflammatory response (SIR). Biomarker performance was assessed in 51 short-term rat in vivo studies with various end-organ toxicities or SIR and receiver operating characteristic curves were generated to compare relative performances.
View Article and Find Full Text PDFSystemic inflammation co-activates coagulation, which unchecked culminates in a lethal syndrome of multi-organ microvascular thrombosis known as disseminated intravascular coagulation (DIC). We studied an endotoxin-induced inflammatory state in rats to identify biomarkers of hemostatic imbalance favoring hypercoagulability. Intraperitoneal injection of LPS at 15 mg/kg body weight resulted in peripheral leukopenia and widespread neutrophilic sequestration characteristic of an acute systemic inflammatory response.
View Article and Find Full Text PDFTCDD and DES have immunotoxic effects, including selective diminution of T lymphocyte progenitors in the fetal liver. The histologic presentation of fetal liver after exposure to either chemical has not been described. Similarly, limited information exists regarding mechanisms by which TCDD or DES may alter fetal hematopoiesis.
View Article and Find Full Text PDFTreatment of pregnant C57Bl/6 mice with 48 mu g/kg diethylstilbestrol (DES) on gestation days (GDs) 14 and 16 resulted in both decreased day 18 fetal thymic cellularity as well as alterations in thymocyte phenotype. Histopathologic examination of GD 18 fetal thymi from DES-exposed dams demonstrated a decrease in thymic size and cellularity and an increase in pyknotic nuclei, indicative of apoptosis, relative to control thymi. Thymic architecture was also altered by DES treatment with a decrease in the distinction between the cortical and medullary regions.
View Article and Find Full Text PDF