Publications by authors named "Elizabeth F Wanner"

Background: In this paper, we conduct a mobility reduction rate comparison between the first and second COVID-19 waves in several localities from America and Europe using Google community mobility reports (CMR) data. Through multi-dimensional visualization, we are able to compare the reduction in mobility from the different lockdown periods for each locality selected, simultaneously considering multiple place categories provided in CMR. In addition, our analysis comprises a 56-day lockdown period for each locality and COVID-19 wave, which we analyze both as 56-day periods and as 14-day consecutive windows.

View Article and Find Full Text PDF

Dengue epidemics, one of the most important viral disease worldwide, can be prevented by combating the transmission vector Aedes aegypti. In support of this aim, this article proposes to analyze the Dengue vector control problem in a multiobjective optimization approach, in which the intention is to minimize both social and economic costs, using a dynamic mathematical model representing the mosquitoes' population. It consists in finding optimal alternated step-size control policies combining chemical (via application of insecticides) and biological control (via insertion of sterile males produced by irradiation).

View Article and Find Full Text PDF

Background: Fourier transforms and their associated power spectra are used for detecting periodicities and protein-coding genes and is generally regarded as a well established technique. Many of the periodicities which have been found with this method are quite well understood such as the periodicity of 3 nt which is associated to codon usage. But what is the origin of the peculiar frequency multiples k/21 which were reported for a tiny section of chromosome 2 in P.

View Article and Find Full Text PDF

The biological pest control in agriculture, an environment-friendly practice, maintains the density of pests below an economic injury level by releasing a suitable quantity of their natural enemies. This work proposes a multi-objective numerical solution to biological pest control for soybean crops, considering both the cost of application of the control action and the cost of economic damages. The system model is nonlinear with impulsive control dynamics, in order to cope more effectively with the actual control action to be applied, which should be performed in a finite number of discrete time instants.

View Article and Find Full Text PDF

This paper proposes a local search optimizer that, employed as an additional operator in multiobjective evolutionary techniques, can help to find more precise estimates of the Pareto-optimal surface with a smaller cost of function evaluation. The new operator employs quadratic approximations of the objective functions and constraints, which are built using only the function samples already produced by the usual evolutionary algorithm function evaluations. The local search phase consists of solving the auxiliary multiobjective quadratic optimization problem defined from the quadratic approximations, scalarized via a goal attainment formulation using an LMI solver.

View Article and Find Full Text PDF