Preterm infants often experience hyperoxia while receiving supplemental oxygen. Prolonged exposure to hyperoxia during development is associated with pathologies such as bronchopulmonary dysplasia and retinopathy of prematurity. Over the last 25 years, however, experiments with animal models have revealed that moderate exposures to hyperoxia (e.
View Article and Find Full Text PDFRats reared in hyperoxia have smaller carotid bodies as adults. To study the time course and mechanisms underlying these changes, rats were reared in 60% O(2) from birth and their carotid bodies were harvested at various postnatal ages (P0-P7, P14). The carotid bodies of hyperoxia-reared rats were smaller than those of age-matched controls beginning at P4.
View Article and Find Full Text PDFRespir Physiol Neurobiol
August 2011
Chronic postnatal hyperoxia attenuates the hypoxic ventilatory response (HVR) of rats. To determine whether the ability to detect deficits in the HVR depends on the degree of hypoxia, we assessed the HVR at several levels of hypoxia in adult rats reared in 60% O(2) for the first two postnatal weeks. Hyperoxia-treated rats exhibited smaller increases in ventilation than control rats at 12% O(2) (30±8 vs.
View Article and Find Full Text PDFChronic postnatal hyperoxia blunts the hypoxic ventilatory response (HVR) in rats, an effect that persists for months after return to normoxia. To determine whether decreased carotid body O(2) sensitivity contributes to this lasting impairment, single-unit chemoafferent nerve and glomus cell calcium responses to hypoxia were recorded from rats reared in 60% O(2) through 7d of age (P7) and then returned to normoxia. Single-unit nerve responses were attenuated by P4 and remained low through P7.
View Article and Find Full Text PDFRespir Physiol Neurobiol
February 2011
Chronic exposure to hyperoxia alters the postnatal development and innervation of the rat carotid body. We hypothesized that this plasticity is related to changes in the expression of neurotrophic factors or related proteins. Rats were reared in 60% O(2) from 24 to 36h prior to birth until studied at 3d of age (P3).
View Article and Find Full Text PDFPerinatal hyperoxia attenuates the hypoxic ventilatory response in rats by altering development of the carotid body and its chemoafferent neurons. In this study, we tested the hypothesis that hyperoxia elicits this plasticity through the increased production of reactive oxygen species (ROS). Rats were born and raised in 60% O(2) for the first two postnatal weeks while treated with one of two antioxidants: vitamin E (via milk from mothers whose diet was enriched with 1000 IU vitamin E kg(-1)) or a superoxide dismutase mimetic, manganese(III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP; via daily intraperitoneal injection of 5-10 mg kg(-1)); rats were subsequently raised in room air until studied as adults.
View Article and Find Full Text PDF