Publications by authors named "Elizabeth F Crowell"

Background: Current automated cervical cytology screening systems require purchase of a dedicated preparation machine and use of a specific staining protocol. CytoProcessor (DATEXIM, Caen, France) is a new automated system, designed to integrate seamlessly into the laboratory's existing workflow. We previously demonstrated the superior performance of CytoProcessor for diagnosis of ThinPrep slides compared to the ThinPrep Imaging System (HOLOGIC, Marlborough, MA).

View Article and Find Full Text PDF

Background: Current automated cervical cytology screening systems still heavily depend on manipulation of glass slides. We developed a new system called CytoProcessorTM (DATEXIM, Caen, France), which increases sensitivity and takes advantage of virtual slide technology to simplify the workflow and save worker time. We used an approach based on artificial intelligence to identify abnormal cells among the tens of thousands in a cervical preparation.

View Article and Find Full Text PDF

The midbody remnant (MBR) that is generated after cytokinetic abscission has recently attracted a lot of attention, because it might have crucial consequences for cell differentiation and tumorigenesis in mammalian cells. In these cells, it has been reported that the MBR is either released into the extracellular medium or retracted into one of the two daughter cells where it can be degraded by autophagy. Here, we describe a major alternative pathway in a variety of human and mouse immortalized cells, cancer cells and primary stem cells.

View Article and Find Full Text PDF

Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by a large relative molecular weight cellulose synthase complex (CSC), which comprises at least three distinct cellulose synthases. Cellulose synthesis in plants or bacteria also requires the activity of an endo-1,4-β-d-glucanase, the exact function of which in the synthesis process is not known.

View Article and Find Full Text PDF

Nuclear factor κB (NF-κB) essential modulator (NEMO), a regulatory component of the IκB kinase (IKK) complex, controls NF-κB activation through its interaction with ubiquitin chains. We show here that stimulation with interleukin-1 (IL-1) and TNF induces a rapid and transient recruitment of NEMO into punctate structures that are anchored at the cell periphery. These structures are enriched in activated IKK kinases and ubiquitinated NEMO molecules, which suggests that they serve as organizing centers for the activation of NF-κB.

View Article and Find Full Text PDF

When a cell divides, it produces two daughter cells initially connected by a cytokinesis bridge, which is eventually cut through abscission. One of the two daughter cells inherits a bridge "remnant", which has been proposed to be degraded by autophagy. The fate and function of remnants is attracting increasing attention, as their accumulation appears to influence proliferation versus differentiation of the daughter cells.

View Article and Find Full Text PDF

It is generally believed that cell elongation is regulated by cortical microtubules, which guide the movement of cellulose synthase complexes as they secrete cellulose microfibrils into the periplasmic space. Transversely oriented microtubules are predicted to direct the deposition of a parallel array of microfibrils, thus generating a mechanically anisotropic cell wall that will favor elongation and prevent radial swelling. Thus far, support for this model has been most convincingly demonstrated in filamentous algae.

View Article and Find Full Text PDF

Microtubules are classically described as being transverse, which is perpendicular to the direction of cell elongation. However, fixation studies have indicated that microtubules can be variably aligned across the epidermis of elongating shoots. In addition, microtubules are reported to have different orientations on inner and outer epidermal surfaces, undermining the idea of hoop-reinforcement.

View Article and Find Full Text PDF

Plant growth and development depend on anisotropic cell expansion. Cell wall yielding provides the driving force for cell expansion, and is regulated in part by the oriented deposition of cellulose microfibrils around the cell. Our current understanding of anisotropic cell expansion combines hypotheses generated by more than 50 years of research.

View Article and Find Full Text PDF

Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by plasma membrane-bound complexes containing cellulose synthase proteins (CESAs). Here, we establish a role for the cytoskeleton in intracellular trafficking of cellulose synthase complexes (CSCs) through the in vivo study of the green fluorescent protein (GFP)-CESA3 fusion protein in Arabidopsis thaliana hypocotyls.

View Article and Find Full Text PDF

In all land plants, cellulose is synthesized from hexameric plasma membrane complexes. Indirect evidence suggests that in vascular plants the complexes involved in primary wall synthesis contain three distinct cellulose synthase catalytic subunits (CESAs). In this study, we show that CESA3 and CESA6 fused to GFP are expressed in the same cells and at the same time in the hypocotyl of etiolated seedlings and migrate with comparable velocities along linear trajectories at the cell surface.

View Article and Find Full Text PDF

Vitamin E (tocopherol) is a powerful antioxidant essential for human health and synthesized only by photosynthetic organisms. The effects of over-expression of tocopherol biosynthetic enzymes have been studied in leaves and seeds, but not in a non-photosynthetic, below-ground plant organ. Genetic and molecular approaches were used to determine if increased levels of tocopherols can be accumulated in potato (Solanum tuberosum L.

View Article and Find Full Text PDF