Publications by authors named "Elizabeth F Bayne"

Phosphorylation of myofilament proteins critically regulates beat-to-beat cardiac contraction and is typically altered in heart failure (HF). β-Adrenergic activation induces phosphorylation in numerous substrates at the myofilament. Nevertheless, how cardiac β-adrenoceptors (βARs) signal to the myofilament in healthy and diseased hearts remains poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • The extracellular matrix (ECM) in human lungs serves as a structural framework and plays a crucial role in lung function and disease.
  • Recent advancements recognize the pulmonary ECM as a significant bioactive component that drives disease development, making it a promising target for new therapies.
  • A novel method using a photocleavable surfactant combined with advanced mass spectrometry techniques has identified nearly 400 unique ECM proteins crucial to lung health, enhancing our understanding of the lung's molecular landscape.
View Article and Find Full Text PDF

Three-dimensional engineered cardiac tissue (ECT) using purified human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has emerged as an appealing model system for the study of human cardiac biology and disease. A recent study reported widely used metabolic (lactate) purification of monolayer hiPSC-CM cultures results in an ischemic cardiomyopathy-like phenotype compared with magnetic antibody-based cell sorting (MACS) purification, complicating the interpretation of studies using lactate-purified hiPSC-CMs. Herein, our objective was to determine if use of lactate relative to MACS-purified hiPSC-CMs affects the properties of resulting hiPSC-ECTs.

View Article and Find Full Text PDF

Myosin functions as the "molecular motor" of the sarcomere and generates the contractile force necessary for cardiac muscle contraction. Myosin light chains 1 and 2 (MLC-1 and -2) play important functional roles in regulating the structure of the hexameric myosin molecule. Each of these light chains has an 'atrial' and 'ventricular' isoform, so called because they are believed to exhibit chamber-restricted expression in the heart.

View Article and Find Full Text PDF

Three-dimensional engineered cardiac tissue (ECT) using purified human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has emerged as an appealing model system for the study of human cardiac biology and disease. A recent study reported widely-used metabolic (lactate) purification of monolayer hiPSC-CM cultures results in an ischemic cardiomyopathy-like phenotype compared to magnetic antibody-based cell sorting (MACS) purification, complicating the interpretation of studies using lactate-purified hiPSC-CMs. Herein, our objective was to determine if use of lactate relative to MACs-purified hiPSC-CMs impacts the properties of resulting hiPSC-ECTs.

View Article and Find Full Text PDF

Myosin functions as the "molecular motor" of the sarcomere and generates the contractile force necessary for cardiac muscle contraction. Myosin light chains 1 and 2 (MLC-1 and -2) play important functional roles in regulating the structure of the hexameric myosin molecule. Each of these light chains has an "atrial" and "ventricular" isoform, so called because they are believed to exhibit chamber-restricted expression in the heart.

View Article and Find Full Text PDF

The neonatal swine heart possesses an endogenous ability to regenerate injured myocardium through the proliferation of pre-existing cardiomyocyte (CM) populations. However, this regenerative capacity is lost shortly after birth. Normal postnatal developmental processes and the regenerative capacity of mammalian hearts are tightly linked, but not much is known about how the swine cardiac proteome changes throughout postnatal development.

View Article and Find Full Text PDF

Human pluripotent stem-cell-derived cardiomyocytes (hPSC-CMs) show immense promise for patient-specific disease modeling, cardiotoxicity screening, and regenerative therapy development. However, thus far, hPSC-CMs in culture have not recapitulated the structural or functional properties of adult CMs . To gain global insight into hPSC-CM biology, we established a multiomics method for analyzing the hPSC-CM metabolome and proteome from the same cell culture, creating multidimensional profiles of hPSC-CMs.

View Article and Find Full Text PDF

Top-down mass spectrometry (MS)-based proteomics is a powerful technology for comprehensively characterizing proteoforms to decipher post-translational modifications (PTMs) together with genetic variations and alternative splicing isoforms toward a proteome-wide understanding of protein functions. In the past decade, top-down proteomics has experienced rapid growth benefiting from groundbreaking technological advances, which have begun to reveal the potential of top-down proteomics for understanding basic biological functions, unraveling disease mechanisms, and discovering new biomarkers. However, many challenges remain to be comprehensively addressed.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is the most common heritable heart disease. Although the genetic cause of HCM has been linked to mutations in genes encoding sarcomeric proteins, the ability to predict clinical outcomes based on specific mutations in HCM patients is limited. Moreover, how mutations in different sarcomeric proteins can result in highly similar clinical phenotypes remains unknown.

View Article and Find Full Text PDF

Top-down mass spectrometry (MS)-based proteomics enable a comprehensive analysis of proteoforms with molecular specificity to achieve a proteome-wide understanding of protein functions. However, the lack of a universal software for top-down proteomics is becoming increasingly recognized as a major barrier, especially for newcomers. Here, we have developed MASH Explorer, a universal, comprehensive, and user-friendly software environment for top-down proteomics.

View Article and Find Full Text PDF

Rationale: Cardiotoxic β adrenergic receptor (βAR)-CaMKII (calmodulin-dependent kinase II) signaling is a major and critical feature associated with development of heart failure. SAP97 (synapse-associated protein 97) is a multifunctional scaffold protein that binds directly to the C-terminus of βAR and organizes a receptor signalosome.

Objective: We aim to elucidate the dynamics of βAR-SAP97 signalosome and its potential role in chronic cardiotoxic βAR-CaMKII signaling that contributes to development of heart failure.

View Article and Find Full Text PDF