Background: Carbohydrate counting is an important component of diabetes management, but it is challenging, often performed inaccurately, and can be a barrier to optimal diabetes management. iSpy is a novel mobile app that leverages machine learning to allow food identification through images and that was designed to assist youth with type 1 diabetes in counting carbohydrates.
Objective: Our objective was to test the app's usability and potential impact on carbohydrate counting accuracy.