Publications by authors named "Elizabeth E Hong"

DNA methylation is implicated in a surprising diversity of regulatory, evolutionary processes and diseases in eukaryotes. The introduction of whole-genome bisulfite sequencing has enabled the study of DNA methylation at a single-base resolution, revealing many new aspects of DNA methylation and highlighting the usefulness of methylome data in understanding a variety of genomic phenomena. As the number of publicly available whole-genome bisulfite sequencing studies reaches into the hundreds, reliable and convenient tools for comparing and analyzing methylomes become increasingly important.

View Article and Find Full Text PDF

Motivation: The two major epigenetic modifications of cytosines, 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC), coexist with each other in a range of mammalian cell populations. Increasing evidence points to important roles of 5-hmC in demethylation of 5-mC and epigenomic regulation in development. Recently developed experimental methods allow direct single-base profiling of either 5-hmC or 5-mC.

View Article and Find Full Text PDF

Although CpG methylation clearly distributes genome-wide in vertebrate nuclear DNA, the state of methylation in the vertebrate mitochondrial genome has been unclear. Several recent reports using immunoprecipitation, mass spectrometry, and enzyme-linked immunosorbent assay methods concluded that human mitochondrial DNA (mtDNA) has much more than the 2 to 5% CpG methylation previously estimated. However, these methods do not provide information as to the sites or frequency of methylation at each CpG site.

View Article and Find Full Text PDF