Purpose: This study aims to explore how cyclic loading influences creep response in the lumbar spine under combined flexion-compression loading.
Methods: Ten porcine functional spinal units (FSUs) were mechanically tested in cyclic or static combined flexion-compression loading. Creep response between loading regimes was compared using strain-time histories and linear regression.
Purpose: Measuring head kinematics data is important to understand and develop methods and standards to mitigate head injuries in contact sports. Instrumented mouthguards (iMGs) have been developed to address coupling issues with previous sensors. Although validated with anthropomorphic test devices (ATDs), there is limited post-mortem human subjects (PMHS) data which provides more accurate soft tissue responses.
View Article and Find Full Text PDFLow back pain (LBP) is a common medical condition worldwide, though the etiology of injuries causing most LBP is unknown. Flexion and repeated compression increase lumbar injury risk, yet the complex viscoelastic behavior of the lumbar spine has not been characterized under this loading scheme. Characterizing the non-injurious primary creep behavior in the lumbar spine is necessary for understanding the biomechanical response preceding injury.
View Article and Find Full Text PDFLow back pain (LBP) affects 50-80% of adults at some point in their lifetime, yet the etiology of injury is not well understood. Those exposed to repeated flexion-compression are at a higher risk for LBP, such as helicopter pilots and motor vehicle operators. Animal injury models offer insight into in vivo injury mechanisms, but interspecies scaling is needed to relate animal results to human.
View Article and Find Full Text PDFDue to its ability to induce heterogenous, patient-specific damage in pulmonary alveoli and capillaries, COVID-19 poses challenges in defining a uniform profile to elucidate infection across all patients. Computational models that integrate changes in ventilation and perfusion with heterogeneous damage profiles offer valuable insights into the impact of COVID-19 on pulmonary health. This study aims to develop an in silico hypothesis-testing platform specifically focused on studying microvascular pulmonary perfusion in COVID-19-infected lungs.
View Article and Find Full Text PDFThe COVID-19 pandemic surges on as vast research is produced to study the novel SARS-CoV-2 virus and the disease state it induces. Still, little is known about the impact of COVID-19-induced microscale damage in the lung on global lung dynamics. This review summarizes the key histological features of SARS-CoV-2 infected alveoli and links the findings to structural tissue changes and surfactant dysfunction affecting tissue mechanical behavior similar to changes seen in other lung injury.
View Article and Find Full Text PDFInterpenetrating network (IPN) hydrogel materials are recognized for their unique mechanical properties. While IPN elasticity and toughness properties have been explored in previous studies, the factors that impact the time-dependent stress relaxation behavior of IPN materials are not well understood. Time-dependent (i.
View Article and Find Full Text PDF