Coxiella burnetii requires a type IVB secretion system (T4SS) to promote intracellular replication and virulence. We hypothesized that employs its T4SS to secrete effectors that enable stealthy colonization of immune cells. To address this, we used RNA sequencing to compare the transcriptional response of murine bone marrow-derived macrophages (BMDM) infected with those of wild-type and a T4SS-null mutant at 8 and 24 h postinfection.
View Article and Find Full Text PDFThe Q fever agent uses a defect in organelle trafficking/intracellular multiplication (Dot/Icm) type 4b secretion system (T4SS) to silence the host innate immune response during infection. By investigating effector proteins containing eukaryotic-like domains, here we identify NopA (nucleolar protein A), which displays four regulator of chromosome condensation (RCC) repeats, homologous to those found in the eukaryotic Ras-related nuclear protein (Ran) guanine nucleotide exchange factor (GEF) RCC1. Accordingly, NopA is found associated with the chromatin nuclear fraction of cells and uses the RCC-like domain to interact with Ran.
View Article and Find Full Text PDFInfect Immun
September 2016
Coxiella burnetii, the etiological agent of Q fever in humans, is an intracellular pathogen that replicates in an acidified parasitophorous vacuole derived from host lysosomes. Generation of this replicative compartment requires effectors delivered into the host cell by the Dot/Icm type IVb secretion system. Several effectors crucial for C.
View Article and Find Full Text PDFIntracellular bacterial pathogens have evolved to exploit the protected niche provided within the boundaries of a eukaryotic host cell. Upon entering a host cell, some bacteria can evade the adaptive immune response of its host and replicate in a relatively nutrient-rich environment devoid of competition from other host flora. Growth within a host cell is not without their hazards, however.
View Article and Find Full Text PDFThere is a fundamental gap in our understanding of how a eukaryotic cell apportions the limited space within its cell membrane. Upon infection, a cell competes with intracellular pathogens for control of this same precious resource. The struggle between pathogen and host provides us with an opportunity to uncover the mechanisms regulating subcellular space by understanding how pathogens modulate vesicular traffic and membrane fusion events to create a specialized compartment for replication.
View Article and Find Full Text PDFThe Francisella FTT0831c/FTL_0325 gene encodes amino acid motifs to suggest it is a lipoprotein and that it may interact with the bacterial cell wall as a member of the OmpA-like protein family. Previous studies have suggested that FTT0831c is surface exposed and required for virulence of Francisella tularensis by subverting the host innate immune response (M. Mahawar et al.
View Article and Find Full Text PDFAutophagy is a key innate immune response to intracellular parasites that promotes their delivery to degradative lysosomes following detection in the cytosol or within damaged vacuoles. Like Listeria and Shigella, which use specific mechanisms to avoid autophagic detection and capture, the bacterial pathogen Francisella tularensis proliferates within the cytosol of macrophages without demonstrable control by autophagy. To examine how Francisella evades autophagy, we screened a library of F.
View Article and Find Full Text PDFChlamydia trachomatis is an obligate intracellular bacterium that is dependent on its host cell for nucleotides. Chlamydia imports ribonucleotide triphosphates (NTPs) but not deoxyribonucleotide triphosphates (dNTPs) and instead uses ribonucleotide reductase to convert imported ribonucleotides into deoxyribonucleotides for DNA synthesis. The genes encoding ribonucleotide reductase have been recently shown to be negatively controlled by a conserved regulator called NrdR.
View Article and Find Full Text PDFType III secretion (T3S) is important for the establishment and maintenance of a chlamydial infection. The genes encoding T3S components in Chlamydia are transcribed as separate temporal classes, but the mechanisms that regulate the timing of their expression are not understood. In this study, we demonstrate that promoters for 10 predicted T3S transcriptional units are each transcribed in vitro by the major form of chlamydial RNA polymerase but not by an alternative form of RNA polymerase containing sigma(28).
View Article and Find Full Text PDF