Lyme arthritis, caused by the spirochete is the most common feature of late disseminated Lyme disease in the United States. While most Lyme arthritis resolves with antibiotics, termed "antibiotic-responsive", some individuals develop progressive synovitis despite antibiotic therapy, called "antibiotic-refractory" Lyme arthritis (LA). The primary drivers behind antibiotic-refractory arthritis remain incompletely understood.
View Article and Find Full Text PDFBackground: Studies have demonstrated the protective role of antibodies against malaria. Young children are known to be particularly vulnerable to malaria, pointing to the evolution of naturally acquired clinical immunity over time. However, whether changes in antibody functionality track with the acquisition of naturally acquired malaria immunity remains incompletely understood.
View Article and Find Full Text PDFBackground: Although emerging data during the SARS-CoV-2 pandemic have demonstrated robust messenger RNA vaccine-induced immunogenicity across populations, including pregnant and lactating individuals, the rapid waning of vaccine-induced immunity and the emergence of variants of concern motivated the use of messenger RNA vaccine booster doses. Whether all populations, including pregnant and lactating individuals, will mount a comparable response to a booster dose is not known.
Objective: This study aimed to profile the humoral immune response to a COVID-19 messenger RNA booster dose in a cohort of pregnant, lactating, and nonpregnant age-matched women.
Substantial immunological changes occur throughout pregnancy to render the mother immunologically tolerant to the fetus and allow fetal growth. However, additional local and systemic immunological adaptations also occur, allowing the maternal immune system to continue to protect the dyad against pathogens both during pregnancy and after birth through lactation. This fine balance of tolerance and immunity, along with physiological and hormonal changes, contributes to increased susceptibility to particular infections in pregnancy, including more severe coronavirus disease 2019 (COVID-19).
View Article and Find Full Text PDFSignificant immunological changes occur throughout pregnancy to tolerize the mother and allow growth of the fetal graft. However, additional local and systemic immunological adaptations also occur, allowing the maternal immune system to continue to protect the dyad against foreign invaders both during pregnancy and after birth through lactation. This fine balance of tolerance and immunity, along with physiological and hormonal changes, contribute to increased susceptibility to particular infections in pregnancy, including more severe COVID-19 disease.
View Article and Find Full Text PDFBackground: Pregnant and lactating women were excluded from initial coronavirus disease 2019 vaccine trials; thus, data to guide vaccine decision making are lacking.
Objective: This study aimed to evaluate the immunogenicity and reactogenicity of coronavirus disease 2019 messenger RNA vaccination in pregnant and lactating women compared with: (1) nonpregnant controls and (2) natural coronavirus disease 2019 infection in pregnancy.
Study Design: A total of 131 reproductive-age vaccine recipients (84 pregnant, 31 lactating, and 16 nonpregnant women) were enrolled in a prospective cohort study at 2 academic medical centers.
Background: Pregnant and lactating women were excluded from initial COVID-19 vaccine trials; thus, data to guide vaccine decision-making are lacking. We sought to evaluate the immunogenicity and reactogenicity of COVID-19 mRNA vaccination in pregnant and lactating women.
Methods: 131 reproductive-age vaccine recipients (84 pregnant, 31 lactating, and 16 non-pregnant) were enrolled in a prospective cohort study at two academic medical centers.
Immunity that controls parasitemia and inflammation during Plasmodium falciparum (Pf) malaria can be acquired with repeated infections. A limited understanding of this complex immune response impedes the development of vaccines and adjunctive therapies. We conducted a prospective systems biology study of children who differed in their ability to control parasitemia and fever following Pf infection.
View Article and Find Full Text PDFGenetically inactivated, Gram-negative bacteria that express malaria vaccine candidates represent a promising novel self-adjuvanting vaccine approach. Antigens expressed on particulate bacterial carriers not only target directly to antigen-presenting cells but also provide a strong danger signal thus circumventing the requirement for potent extraneous adjuvants. E.
View Article and Find Full Text PDF