Publications by authors named "Elizabeth DeLassus"

Immunostaining is the process of identifying proteins in tissue sections by incubating the sample with antibodies specific to the protein of interest, then visualizing the bound antibody using a chromogen (immunohistochemistry or IHC) or fluorescence (immunofluorescence or IF). Unlike in situ hybridization, which identifies gene transcripts in cells, immunostaining identifies the products themselves and provides information about their localization within cells (nuclear, cytoplasmic, or membrane) or extracellular matrix. This can be particularly important in the context of bone and cartilage because they contain many cell types as well as matrix components, each with distinct protein expression patterns.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a debilitating neoplasm of terminally differentiated plasma B cells that resulted in over 13,000 deaths in 2017 alone. Combination therapies involving melphalan, a small-molecule DNA alkylating agent, are commonly prescribed to patients with relapsed or refractory MM, necessitating the stratification of responding patients to minimize toxicities and improve quality of life. Here, we evaluated the use of 3,4-dihydroxy-6-F-fluoro-l-phenylalanine (F-FDOPA), a clinically available PET radiotracer with specificity to the L-type amino acid transporter 1 (LAT1), which also mediates melphalan uptake, for imaging melphalan therapy response in a preclinical immunocompetent model of MM.

View Article and Find Full Text PDF

Site-1 protease (S1P) is a proprotein convertase with essential functions in the conversion of precursor proteins to their active form. In earlier studies, we demonstrated that S1P ablation in the chondrocyte lineage results in a drastic reduction in endochondral bone formation. To investigate the mechanistic contribution of S1P to bone development we ablated S1P in the osterix lineage in mice.

View Article and Find Full Text PDF

Immunohistochemistry (IHC) is the process of identifying proteins in tissue sections by incubating the sample with antibodies specific to the protein of interest, and then visualizing the bound antibody using a chromogen. Unlike in situ hybridization, which identifies gene transcripts in cells, IHC identifies the products themselves and provides information about their localization within cells (nuclear, cytoplasmic, or membrane) or extracellular matrix. This can be particularly important in the context of bone and cartilage because they contain many cell types as well as matrix components, each with distinct protein expression patterns.

View Article and Find Full Text PDF

The proprotein convertase site-1 protease (S1P) converts latent ER-membrane bound transcription factors SREBPs and ATF6 to their active forms. SREBPs are involved in cholesterol and fatty acid homeostasis whereas ATF6 is involved in unfolded protein response pathways (UPR). Cartilage-specific ablation of S1P in mice (S1Pcko) results in abnormal cartilage devoid of type II collagen protein (Col II).

View Article and Find Full Text PDF

Type II collagen is the major collagenous component of the cartilage extracellular matrix; formation of a covalently cross-linked type II collagen network provides cartilage with important tensile properties. The Col2a1 gene is encoded by 54 exons, of which exon 2 is subject to alternative splicing, resulting in different isoforms named IIA, IIB, IIC and IID. The two major procollagen protein isoforms are type IIA and type IIB procollagen.

View Article and Find Full Text PDF

The aim of this study was to investigate the effects of serum and compressive dynamic loading on the cartilaginous matrix spatiotemporal distribution around chondrocytes in vitro. Murine chondrocytes suspended in agarose were cultured in serum-free media or in varying concentrations of serum with or without compressive dynamic loading. Gene expression was assayed by quantitative polymerase chain reaction.

View Article and Find Full Text PDF

Site-1 protease (S1P) is a proprotein convertase with essential functions in lipid homeostasis and unfolded protein response pathways. We previously studied a mouse model of cartilage-specific knock-out of S1P in chondroprogenitor cells. These mice exhibited a defective cartilage matrix devoid of type II collagen protein (Col II) and displayed chondrodysplasia with no endochondral bone formation even though the molecular program for endochondral bone development appeared intact.

View Article and Find Full Text PDF