Publications by authors named "Elizabeth DeChene"

The need for education focusing on genomic technologies and variant interpretation for genetic counseling trainees has prompted genetic counseling training programs to alter their curricula to incorporate this content. Given students' diverse experiences prior to matriculation into genetic counseling training programs, students' familiarity with these topics may vary. Following receipt of feedback from trainees at a large genetic counseling program regarding an existing course focused on molecular technologies, a three-part asynchronous module series was created as a prerequisite to this course as an opportunity to align knowledge.

View Article and Find Full Text PDF

Objective: To evaluate factors influencing the diagnostic yield of comprehensive gene panel testing (CGPT) for hearing loss (HL) in children and to understand the characteristics of undiagnosed probands.

Study Design: This was a retrospective cohort study of 474 probands with childhood-onset HL who underwent CGPT between 2016 and 2020 at a single center. Main outcomes and measures included the association between clinical variables and diagnostic yield and the genetic and clinical characteristics of undiagnosed probands.

View Article and Find Full Text PDF
Article Synopsis
  • - Synonymous variants can disrupt pre-mRNA splicing, leading to disease-causing transcripts, yet are often neglected in genetic testing without further functional data.
  • - The study focuses on a specific synonymous variant (c.327C>T) in the TECTA gene found in seven individuals with hearing loss, which was shown to activate an unintended splicing site.
  • - Results indicate this variant likely causes autosomal recessive hearing loss and appears to be a founder variant among Latinos of African ancestry, highlighting the need for thorough splicing evaluations in identifying genetic diseases.
View Article and Find Full Text PDF

Clinical exome sequencing (CES) aids in the diagnosis of rare genetic disorders. Herein, we report the molecular diagnostic yield and spectrum of genetic alterations contributing to disease in 700 pediatric cases analyzed at the Children's Hospital of Philadelphia. The overall diagnostic yield was 23%, with three cases having more than one molecular diagnosis and 2.

View Article and Find Full Text PDF
Article Synopsis
  • - SOX6 is part of a group of genes that encode transcription factors critical for controlling cell behavior during development, with involvement in processes like neurogenesis and skeletogenesis.
  • - Research identified 19 individuals from 17 different families with various alterations in the SOX6 gene, all displaying developmental delays and intellectual disabilities, along with other possible features like ADHD and autism.
  • - The study found that different types of genetic variants in SOX6, including deletions and missense changes, lead to its inactivation, suggesting that a lack of SOX6 function is linked to a specific neurodevelopmental disorder, though no direct genotype-phenotype relationships were established.
View Article and Find Full Text PDF
Article Synopsis
  • An amendment to the original paper has been released.
  • The amended paper includes important updates or corrections.
  • You can find the link to access this amendment at the top of the paper.
View Article and Find Full Text PDF

Purpose: Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants inCHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function.

Methods: We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing.

View Article and Find Full Text PDF

Importance: Although genetic testing is important for bringing precision medicine to children with epilepsy, it is unclear what genetic testing strategy is best in maximizing diagnostic yield.

Objectives: To evaluate the diagnostic yield of an exome-based gene panel for childhood epilepsy and discuss the value of follow-up testing.

Design, Setting, And Participants: A case series study was conducted on data from clinical genetic testing at Children's Hospital of Philadelphia was conducted from September 26, 2016, to January 8, 2018.

View Article and Find Full Text PDF
Article Synopsis
  • MYH7-related disease (MRD) is the most common hereditary primary cardiomyopathy, linked to about 40% of familial hypertrophic cases, and can also show as skeletal myopathies.
  • Pathogenic MYH7 variants lead to various clinical symptoms, making it difficult to predict patient outcomes based on genotype alone.
  • This study analyzes six MRD families with unique genotypes, offering new insights for more personalized treatment strategies and genetic counseling.
View Article and Find Full Text PDF

Clinical exome sequencing (CES) has a reported diagnostic yield of 20% to 30% for most clinical indications. The ongoing discovery of novel gene-disease and variant-disease associations are expected to increase the diagnostic yield of CES. Performing systematic reanalysis of previously nondiagnostic CES samples represents a significant challenge for clinical laboratories.

View Article and Find Full Text PDF

Heterozygous de novo or inherited pathogenic variants in the PCDH19 gene cause a spectrum of neurodevelopmental features including developmental delay and seizures. PCDH19 epilepsy was previously known as "epilepsy and mental retardation limited to females", since the condition almost exclusively affects females. It is hypothesized that the co-existence of two populations of neurons, some with and some without PCDH19 protein expression, results in pathologically abnormal interactions between these neurons, a mechanism also referred to as cellular interference.

View Article and Find Full Text PDF

Purpose: Hearing loss (HL) is the most common sensory disorder in children. Prompt molecular diagnosis may guide screening and management, especially in syndromic cases when HL is the single presenting feature. Exome sequencing (ES) is an appealing diagnostic tool for HL as the genetic causes are highly heterogeneous.

View Article and Find Full Text PDF

In the published version of this article, the name of the 18th author was misspelled as Minjie Lou. The correct name is Minjie Luo. The authors regret the error.

View Article and Find Full Text PDF

PurposeThe objective of this study was to assess the ability of our laboratory's exome-sequencing test to detect known and novel sequence variants and identify the critical factors influencing the interpretation of a clinical exome test.MethodsWe developed a two-tiered validation strategy: (i) a method-based approach that assessed the ability of our exome test to detect known variants using a reference HapMap sample, and (ii) an interpretation-based approach that assessed our relative ability to identify and interpret disease-causing variants, by analyzing and comparing the results of 19 randomly selected patients previously tested by external laboratories.ResultsWe demonstrate that this approach is reproducible with >99% analytical sensitivity and specificity for single-nucleotide variants and indels <10 bp.

View Article and Find Full Text PDF

Background: Conditions associated with sudden cardiac arrest/death (SCA/D) in youth often have a genetic etiology. While SCA/D is uncommon, a pro-active family screening approach may identify these inherited structural and electrical abnormalities prior to symptomatic events and allow appropriate surveillance and treatment. This study investigated the diagnostic utility of exome sequencing (ES) by evaluating the capture and coverage of genes related to SCA/D.

View Article and Find Full Text PDF

Background: Exome sequencing is a promising method for diagnosing patients with a complex phenotype. However, variant interpretation relative to patient phenotype can be challenging in some scenarios, particularly clinical assessment of rare complex phenotypes. Each patient's sequence reveals many possibly damaging variants that must be individually assessed to establish clear association with patient phenotype.

View Article and Find Full Text PDF

Background: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors.

View Article and Find Full Text PDF

Laing early onset distal myopathy and myosin storage myopathy are caused by mutations of slow skeletal/β-cardiac myosin heavy chain encoded by the gene MYH7, as is a common form of familial hypertrophic/dilated cardiomyopathy. The mechanisms by which different phenotypes are produced by mutations in MYH7, even in the same region of the gene, are not known. To explore the clinical spectrum and pathobiology, we screened the MYH7 gene in 88 patients from 21 previously unpublished families presenting with distal or generalized skeletal muscle weakness, with or without cardiac involvement.

View Article and Find Full Text PDF

As genomic and exomic testing expands in both the research and clinical arenas, determining whether, how, and which incidental findings to return to the ordering clinician and patient becomes increasingly important. Although opinion is varied on what should be returned to consenting patients or research participants, most experts agree that return of medically actionable results should be considered. There is insufficient evidence to fully inform evidence-based clinical practice guidelines regarding return of results from genome-scale sequencing, and thus generation of such evidence is imperative, given the rapidity with which genome-scale diagnostic tests are being incorporated into clinical care.

View Article and Find Full Text PDF

Objective: To identify causative genes for centronuclear myopathies (CNM), a heterogeneous group of rare inherited muscle disorders that often present in infancy or early life with weakness and hypotonia, using next-generation sequencing of whole exomes and genomes.

Methods: Whole-exome or -genome sequencing was performed in a cohort of 29 unrelated patients with clinicopathologic diagnoses of CNM or related myopathy depleted for cases with mutations of MTM1, DNM2, and BIN1. Immunofluorescence analyses on muscle biopsies, splicing assays, and gel electrophoresis of patient muscle proteins were performed to determine the molecular consequences of mutations of interest.

View Article and Find Full Text PDF

Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzyme regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM-related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad genotypic and phenotypic spectrum.

View Article and Find Full Text PDF

We ascertained a nuclear family in which three of four siblings were affected with an unclassified autosomal recessive myopathy characterized by severe weakness, respiratory impairment, scoliosis, joint contractures, and an unusual combination of dystrophic and myopathic features on muscle biopsy. Whole genome sequence from one affected subject was filtered using linkage data and variant databases. A single gene, MEGF10, contained nonsynonymous mutations that co-segregated with the phenotype.

View Article and Find Full Text PDF

Congenital fiber type disproportion (CFTD) is a rare congenital myopathy characterized by hypotonia and generalized muscle weakness. Pathologic diagnosis of CFTD is based on the presence of type 1 fiber hypotrophy of at least 12% in the absence of other notable pathological findings. Mutations of the ACTA1 and SEPN1 genes have been identified in a small percentage of CFTD cases.

View Article and Find Full Text PDF