The Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape and optical properties. Thanks to its geometry, the sensor will be capable of studying dust-lifting processes with a high temporal resolution and high spatial coverage.
View Article and Find Full Text PDFThe methylerythritol 4-phosphate (MEP) pathway is of paramount importance for generating plastidial isoprenoids. The first enzyme of the MEP pathway, 1-deoxy-D-xylulose-5-phosphate synthase (DXS), catalyzes a flux-controlling step. In plants the DXS gene family is composed of three distinct classes with non-redundant functions.
View Article and Find Full Text PDFThe SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas.
View Article and Find Full Text PDFSignals originating within plastids modulate organelle differentiation by transcriptionally regulating nuclear-encoded genes. These retrograde signals are also integral regulators of plant development, including leaf morphology. The clb5 mutant displays severe leaf morphology defects due to Apocarotenoid Signal 1 (ACS1) accumulation in the developmentally arrested plastid.
View Article and Find Full Text PDFThe plastidial methylerythritol phosphate (MEP) pathway is an essential route for plants as the source of precursors for all plastidial isoprenoids, many of which are of medical and biotechnological importance. The MEP pathway is highly sensitive to environmental cues as many of these compounds are linked to photosynthesis and growth and light is one of the main regulatory factors. However, the mechanisms coordinating the MEP pathway with light cues are not fully understood.
View Article and Find Full Text PDFSugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H(+)/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6).
View Article and Find Full Text PDFIn addition to acting as photoprotective compounds, carotenoids also serve as precursors in the biosynthesis of several phytohormones and proposed regulatory signals. Here, we report a signaling process derived from carotenoids that regulates early chloroplast and leaf development. Biosynthesis of the signal depends on ζ-carotene desaturase activity encoded by the ζ-CAROTENE DESATURASE (ZDS)/CHLOROPLAST BIOGENESIS5 (CLB5) gene in Arabidopsis thaliana.
View Article and Find Full Text PDFThe value and timing of multidimensional assessments in chronic obstructive pulmonary disease (COPD) remains unclear because there is little information about their variability and relationship to outcome. The aim of this study was to determine the progression of COPD using clinical and spirometric variability over time with mortality as the outcome. We determined the annual intra-individual variability of forced expiratory volume in 1 s (FEV1) and BODE (body mass index, airflow obstruction, dyspnoea, exercise capacity) index in 403 patients with at least five measurements.
View Article and Find Full Text PDFIn recent years, the transcription factor ABI4 has emerged as an important node of integration for external and internal signals such as nutrient status and hormone signaling that modulates critical transitions during the growth and development of plants. For this reason, understanding the mechanism of action and regulation of this protein represents an important step towards the elucidation of crosstalk mechanisms in plants. However, this understanding has been hindered due to the negligible levels of this protein as a result of multiple posttranscriptional regulations.
View Article and Find Full Text PDFThe acquisition of plastids is a landmark event in plant evolution. The proper functionality of these organelles depends on strict and continuous communication between the plastids and the nucleus to precisely adjust gene expression in response to the organelle's requirements. Signals originating from the plastids impact the expression of a variety of nuclear genes, and this retrograde communication is essential to couple the nuclear expression of plastid-localized products with organelle gene expression and, ultimately, functionality.
View Article and Find Full Text PDFBackground: The relationship between serum biomarkers and clinical expressions of COPD is limited. We planned to further describe this association using markers of inflammation and injury and repair.
Methods: We studied lung function, comorbidities, exercise tolerance, BODE index, and quality of life in 253 COPD patients and recorded mortality over three years.
Rationale: Chronic obstructive pulmonary disease (COPD) is thought to result in rapid and progressive loss of lung function usually expressed as mean values for whole cohorts.
Objectives: Longitudinal studies evaluating individual lung function loss and other domains of COPD progression are needed.
Methods: We evaluated 1,198 stable, well-characterized patients with COPD (1,100 males) recruited in two centers (Florida and Tenerife, Spain) and annually monitored their multidomain progression from 1997 to 2009.
Cry toxins produced by Bacillus thuringiensis bacteria are insecticidal proteins used worldwide in the control of different insect pests. Alterations in toxin-receptor interaction represent the most common mechanism to induce resistance to Cry toxins in lepidopteran insects. Cry toxins bind with high affinity to the cadherin protein present in the midgut cells and this interaction facilitates the proteolytic removal of helix α-1 and pre-pore oligomer formation.
View Article and Find Full Text PDFThe 1-deoxy-D-xylulose 5-phosphate synthase (DXS) enzyme catalyses the first biosynthetic step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. In plants the MEP pathway is involved in the synthesis of the common precursors to the plastidic isoprenoids, isopentenyl diphosphate and dimethylallyl diphosphate, in plastids. DXS is recognized as limiting this pathway and is a potential target for manipulation to increase various isoprenoids such as carotenoids.
View Article and Find Full Text PDFRationale: Microalbuminuria (MAB), a marker of endovascular dysfunction, is a predictor of cardiovascular events and all-cause mortality in the general population. There is evidence of vascular dysfunction in patients with chronic obstructive pulmonary disease (COPD).
Objectives: To assess the prevalence and relationship of MAB with clinical and physiological parameters in stable patients with COPD.
The hexose transporter 2 gene (Hxt2) from Saccharomyces cerevisiae was expressed in Arabidopsis thaliana under control of the 35S promoter. Several independent transgenic lines were selected after confirming single gene insertion by southern blot analysis in the T4 generation. Northern blots revealed the presence of heterologous transcript.
View Article and Find Full Text PDFThe methyl-D-erythritol 4-phosphate pathway is responsible for the biosynthesis of a substantial number of natural compounds of biological and biotechnological importance. In recent years, this pathway has become an obvious target to develop new herbicides and antimicrobial drugs. In addition, the production of a variety of compounds of medical and agricultural interest may be possible through the genetic manipulation of this pathway.
View Article and Find Full Text PDFThe transcription factor ABA INSENSITIVE 4 (ABI4), discovered nearly 10 years ago, plays a central role in a variety of functions in plants, including sugar responses. However, not until very recently has its mechanism of action begun to be elucidated. Modulating gene expression is one of the primary mechanisms of sugar regulation in plants.
View Article and Find Full Text PDFLegumes acquire significant amounts of nitrogen for growth from symbiotic nitrogen fixation. The glutamine synthetase (GS)/NADH-dependent glutamate synthase (NADH-GOGAT) cycle catalyzes initial nitrogen assimilation. This report describes the impact of specifically reducing nodule NADH-GOGAT activity on symbiotic performance of alfalfa (Medicago sativa L.
View Article and Find Full Text PDF