Publications by authors named "Elizabeth Conibear"

Endosomal coats incorporate membrane-binding subunits such as sorting nexin (SNX) proteins. The SNX-BAR paralogs Vin1 and Vps5 are respective subunits of the endosomal VINE and retromer complexes whose dimerizing BAR domains are required for complex assembly and membrane association. However, a degree of promiscuity is predicted for yeast BAR-BAR pairings, and recent work has implicated the unstructured N-terminal domains of Vin1 and Vps5 in coat formation.

View Article and Find Full Text PDF

The yeast Saccharomyces cerevisiae is widely used as a host cell for recombinant protein production due to its fast growth, cost-effective culturing, and ability to secrete large and complex proteins. However, one major drawback is the relatively low yield of produced proteins compared to other host systems. To address this issue, we developed an overlay assay to screen the yeast knockout collection and identify mutants that enhance recombinant protein production, specifically focusing on the secretion of the Trametes trogii fungal laccase enzyme.

View Article and Find Full Text PDF

Actively maintained close appositions between organelle membranes, also known as contact sites, enable the efficient transfer of biomolecules between cellular compartments. Several such sites have been described as well as their tethering machineries. Despite these advances we are still far from a comprehensive understanding of the function and regulation of most contact sites.

View Article and Find Full Text PDF

Membrane trafficking pathways perform important roles in establishing and maintaining the endosomal network. Retrograde protein sorting from the endosome is promoted by conserved SNX-BAR-containing coat complexes including retromer which enrich cargo at tubular microdomains and generate transport carriers. In metazoans, retromer cooperates with VARP, a conserved VPS9-domain GEF, to direct an endosomal recycling pathway.

View Article and Find Full Text PDF

The endolysosomal network consists of highly dynamic membrane-bound compartments that control subcellular degradative and recycling processes. A conserved family of endosomal coat complexes known as SNX-BARs drive the formation of tubular membrane transport carriers for cargo retrieval. Whereas SNX1-related SNX-BARs were previously thought to rely on their association with the retromer complex to recognize cargo, recent work shows this class of SNX-BARs can directly bind and deliver cargo.

View Article and Find Full Text PDF

Calcineurin, the conserved protein phosphatase and target of immunosuppressants, is a critical mediator of Ca signaling. Here, to discover calcineurin-regulated processes we examined an understudied isoform, CNAβ1. We show that unlike canonical cytosolic calcineurin, CNAβ1 localizes to the plasma membrane and Golgi due to palmitoylation of its divergent C-terminal tail, which is reversed by the ABHD17A depalmitoylase.

View Article and Find Full Text PDF

The conserved VPS13 proteins constitute a new family of lipid transporters at membrane contact sites. These large proteins are suspected to bridge membranes and form a direct channel for lipid transport between organelles. Mutations in the 4 human homologs () are associated with a number of neurological disorders, but little is known about their precise functions or the relevant contact sites affected in disease.

View Article and Find Full Text PDF

Mutations in each of the four human VPS13 (VPS13A-D) proteins are associated with distinct neurological disorders: chorea-acanthocytosis, Cohen syndrome, early-onset Parkinson's disease and spastic ataxia. Recent evidence suggests that the different VPS13 paralogs transport lipids between organelles at different membrane contact sites. How each VPS13 isoform is targeted to organelles is not known.

View Article and Find Full Text PDF

The regulated expansion of membrane contact sites, which mediate the nonvesicular exchange of lipids between organelles, requires the recruitment of additional contact site proteins. Yeast Vps13 dynamically localizes to membrane contacts that connect the ER, mitochondria, endosomes, and vacuoles and is recruited to the prospore membrane in meiosis, but its targeting mechanism is unclear. In this study, we identify the sorting nexin Ypt35 as a novel adaptor that recruits Vps13 to endosomal and vacuolar membranes.

View Article and Find Full Text PDF

The polytopic yeast protein Chs3 (chitin synthase III) relies on a dedicated membrane-localized chaperone, Chs7, for its folding and expression at the cell surface. In the absence of Chs7, Chs3 forms high molecular weight aggregates and is retained in the endoplasmic reticulum (ER). Chs7 was reported to be an ER resident protein, but its role in Chs3 folding and transport was not well characterized.

View Article and Find Full Text PDF

The Ras proteins are well-known drivers of many cancers and thus represent attractive targets for the development of anticancer therapeutics. Inhibitors that disrupt the association of the Ras proteins with membranes by blocking the addition of the farnesyl lipid moiety to the Ras C-terminus failed in clinical trials. Here, we explore the possibility of targeting a second lipid modification, S-acylation, commonly referred to as palmitoylation, as a strategy to disrupt the membrane interaction of specific Ras isoforms.

View Article and Find Full Text PDF

P4-ATPases are a family of putative phospholipid flippases that regulate lipid membrane asymmetry, which is important for vesicle formation. Two yeast flippases, Drs2 and Neo1, have nonredundant functions in the recycling of the synaptobrevin-like v-SNARE Snc1 from early endosomes. Drs2 activity is needed to form vesicles and regulate its own trafficking, suggesting that flippase activity and localization are linked.

View Article and Find Full Text PDF

Sorting nexins are PX domain-containing proteins that bind phospholipids and often act in membrane trafficking where they help to select cargo. However, the functions and cargo specificities of many sorting nexins are unknown. Here, a high-throughput imaging screen was used to identify new sorting nexin cargo in the yeast Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Dynamic changes in protein S-palmitoylation are critical for regulating protein localization and signaling. Only two enzymes - the acyl-protein thioesterases APT1 and APT2 - are known to catalyze palmitate removal from cytosolic cysteine residues. It is unclear if these enzymes act constitutively on all palmitoylated proteins, or if additional depalmitoylases exist.

View Article and Find Full Text PDF

Heterotetrameric adaptor protein complexes are important mediators of cargo protein sorting in clathrin-coated vesicles. The cell type-specific expression of alternate μ chains creates distinct forms of AP-1 with altered cargo sorting, but how these subunits confer differential function is unclear. Whereas some studies suggest the μ subunits specify localization to different cellular compartments, others find that the two forms of AP-1 are present in the same vesicle but recognize different cargo.

View Article and Find Full Text PDF

Protein palmitoylation is a dynamic post-translational modification, where the 16-carbon fatty acid, palmitate, is added to cysteines of proteins to modulate protein sorting, targeting and signalling. Palmitate removal from proteins is mediated by acyl protein thioesterases (APTs). Although initially identified as lysophospholipases, increasing evidence suggests APT1 and APT2 are the major APTs that mediate the depalmitoylation of diverse cellular substrates.

View Article and Find Full Text PDF

Transport of membrane proteins between cellular organelles requires the concerted action of many regulatory factors, which aid in cargo recognition and vesicle formation, targeting, and fusion. The yeast Saccharomyces cerevisiae is a useful model system for studying such regulators, due to the availability of genome-wide mutant collections and reporter proteins that provide sensitive biochemical readouts of individual transport pathways. Here, we describe an enzymatic invertase assay for evaluating endocytic recycling using a chimeric GFP-Snc1-Suc2 reporter.

View Article and Find Full Text PDF

The retromer complex facilitates the sorting of integral membrane proteins from the endosome to the late Golgi. In mammalian cells, the efficient recruitment of retromer to endosomes requires the lipid phosphatidylinositol 3-phosphate (PI3P) as well as Rab5 and Rab7 GTPases. However, in yeast, the role of Rabs in recruiting retromer to endosomes is less clear.

View Article and Find Full Text PDF

Background: We report a 6.5 year-old female with a homozygous missense mutation in ZFYVE20, encoding Rabenosyn-5 (Rbsn-5), a highly conserved multi-domain protein implicated in receptor-mediated endocytosis. The clinical presentation includes intractable seizures, developmental delay, microcephaly, dysostosis, osteopenia, craniofacial dysmorphism, macrocytosis and megaloblastoid erythropoiesis.

View Article and Find Full Text PDF

HIP14 is the most highly conserved of 23 human palmitoyl acyltransferases (PATs) that catalyze the post-translational addition of palmitate to proteins, including huntingtin (HTT). HIP14 is dysfunctional in the presence of mutant HTT (mHTT), the causative gene for Huntington disease (HD), and we hypothesize that reduced palmitoylation of HTT and other HIP14 substrates contributes to the pathogenesis of the disease. Here we describe the yeast two-hybrid (Y2H) interactors of HIP14 in the first comprehensive study of interactors of a mammalian PAT.

View Article and Find Full Text PDF

Macromolecular assemblies involving membrane proteins (MPs) serve vital biological roles and are prime drug targets in a variety of diseases. Large-scale affinity purification studies of soluble-protein complexes have been accomplished for diverse model organisms, but no global characterization of MP-complex membership has been described so far. Here we report a complete survey of 1,590 putative integral, peripheral and lipid-anchored MPs from Saccharomyces cerevisiae, which were affinity purified in the presence of non-denaturing detergents.

View Article and Find Full Text PDF

The identification of genetic causes for Mendelian disorders has been based on the collection of multi-incident families, linkage analysis, and sequencing of genes in candidate intervals. This study describes the application of next-generation sequencing technologies to a Swiss kindred presenting with autosomal-dominant, late-onset Parkinson disease (PD). The family has tremor-predominant dopa-responsive parkinsonism with a mean onset of 50.

View Article and Find Full Text PDF

When a coated transport vesicle docks with its target membrane, the coat proteins and docking machinery must be released before the membranes can fuse. A recent paper shows how this disassembly is triggered at precisely the right time.

View Article and Find Full Text PDF

Current models suggest that TRAPP tethering complexes exist in two forms. Whereas the seven-subunit TRAPPI complex mediates ER-to-Golgi transport, TRAPPII contains three additional subunits (Trs65, Trs120 and Trs130) and is required for distinct tethering events at Golgi membranes. It is not clear how TRAPPII assembly is regulated.

View Article and Find Full Text PDF