Publications by authors named "Elizabeth Canarie"

Site-directed spin-labeling electron paramagnetic resonance spectroscopy is a powerful technique for the investigation of protein structure and dynamics. Accurate spin-label modeling methods are essential to make full quantitative use of site-directed spin-labeling electron paramagnetic resonance data for protein modeling and model validation. Using a set of double electron-electron resonance data from seven different site pairs on maltodextrin/maltose-binding protein under two different conditions using five different spin labels, we compare the ability of two widely used spin-label modeling methods, based on accessible volume sampling and rotamer libraries, to predict experimental distance distributions.

View Article and Find Full Text PDF

Long electron spin coherence lifetimes are essential for applications in quantum information science and electron paramagnetic resonance, for instance, for nanoscale distance measurements in biomolecular systems using double electron-electron resonance. We experimentally investigate the decoherence dynamics under the Hahn echo sequence of the organic radical -TEMPO in a variably deuterated frozen water:glycerol matrix. The coherence time (phase memory time) scales with proton concentration as [H].

View Article and Find Full Text PDF

The decoherence, or dephasing, of electron spins in paramagnetic molecules limits sensitivity and resolution in electron paramagnetic resonance spectroscopy, and it represents a challenge for utilizing paramagnetic molecules as qubit units in quantum information devices. For organic radicals in dilute frozen aqueous solution at cryogenic temperatures, electron spin decoherence is driven by neighboring nuclear spins. Here, we show that this nuclear-spin-driven decoherence can be quantitatively predicted from the molecular structure and solvation geometry of the radicals.

View Article and Find Full Text PDF

Cellular iron homeostasis is dominated by FBXL5-mediated degradation of iron regulatory protein 2 (IRP2), which is dependent on both iron and oxygen. However, how the physical interaction between FBXL5 and IRP2 is regulated remains elusive. Here, we show that the C-terminal substrate-binding domain of FBXL5 harbors a [2Fe2S] cluster in the oxidized state.

View Article and Find Full Text PDF

To better understand metalloproteins with Mn-clusters, we have designed artificial four-helix bundles to have one, two, or three dinuclear metal centers able to bind Mn(II). Circular dichroism measurements showed that the Mn-proteins have substantial α-helix content, and analysis of electron paramagnetic resonance spectra is consistent with the designed number of bound Mn-clusters. The Mn-proteins were shown to catalyze the conversion of hydrogen peroxide into molecular oxygen.

View Article and Find Full Text PDF