Publications by authors named "Elizabeth C Butler"

Anthropogenic loss of phosphorus to surface waters not only causes environmental problems but depletes valuable phosphorus reserves. In this study, magnesium amended biochars and magnesium silicate, synthesized from corn cobs and rice straw, respectively, were evaluated for phosphorus uptake including the effects of pH and alkalinity. The overall goal was to close the phosphorus loop by recovering phosphorus from animal waste and reusing it as fertilizer.

View Article and Find Full Text PDF

Trichloroethylene (TCE) and tetrachloroethylene (PCE) are common ground water contaminants susceptible to reductive dechlorination by FeS (mackinawite) in anaerobic environments. The objective of this study was to characterize the mineral-associated products that form when mackinawite reacts with TCE and PCE. The dissolved products of the reaction included Cl and Fe, and trace amounts of cis 1,2-dichloroethylene (for TCE) and TCE (for PCE).

View Article and Find Full Text PDF

This paper investigated the mackinawite (FeS)-associated products formed during reaction between FeS and carbon tetrachloride (CT) at pH 7 and 8. At pH 8, reaction of FeS with CT led to formation of abundant spherical particles with diameters between 50 and 400 nm on the FeS surface and in solution; far fewer such particles were observed at pH 7. Analysis of the FeS surface by energy dispersive X-ray spectroscopy after reaction with CT at pH 8 showed decreased sulfur and elevated oxygen compared to unreacted FeS.

View Article and Find Full Text PDF

Hexavalent chromium (Cr(vi), present predominantly as CrO4(2-) in water at neutral pH) is a common ground water pollutant, and reductive immobilization is a frequent remediation alternative. The Cr(iii) that forms upon microbial or abiotic reduction often co-precipitates with naturally present or added iron (Fe), and the stability of the resulting Fe-Cr precipitate is a function of its mineral properties. In this study, Fe-Cr solids were formed by microbial Cr(vi) reduction using Desulfovibrio vulgaris strain RCH1 in the presence of the Fe-bearing minerals hematite, aluminum substituted goethite (Al-goethite), and nontronite (NAu-2, Clay Minerals Society), or by abiotic Cr(vi) reduction by dithionite reduced NAu-2 or iron sulfide (FeS).

View Article and Find Full Text PDF

Simple aluminum (hydr)oxides and layered double hydroxides were synthesized using common chemicals and equipment by varying synthesis temperature, concentrations of extra sulfate and citrate, and metal oxide amendments. Aluminum (hydr)oxide samples were aged at either 25 or 200°C during synthesis and, in some cases, calcined at 600 °C. Despite yielding increased crystallinity and mineral phase changes, higher temperatures had a generally negative effect on fluoride adsorption.

View Article and Find Full Text PDF

Four advanced oxidation processes (UV/TiO(2), UV/IO(4)(-), UV/S(2)O(8)(2-), and UV/H(2)O(2)) were tested for their ability to mineralize naphthenic acids to inorganic carbon in a model oil sands process water containing high dissolved and suspended solids at pH values ranging from 8 to 12. A medium pressure mercury (Hg) lamp was used, and a Quartz immersion well surrounded the lamp. The treatment goal of 5mg/L naphthenic acids (3.

View Article and Find Full Text PDF

Isotope fractionation has been used with increasing frequency as a tool to quantify degradation of chlorinated aliphatic pollutants in the environment. The objective of this research was to determine if the electron donor present in enrichment cultures prepared from uncontaminated sediments influenced the extent of isotope fractionation of tetrachloroethylene (PCE), either directly, or through its influence on microbial community composition. Two PCE-degrading enrichment cultures were prepared from Duck Pond (DP) sediment and were incubated with formate (DPF) or H(2) (DPH) as electron donor.

View Article and Find Full Text PDF

Interest has grown in the use of reactive minerals for natural and engineered transformation of ground water contaminants. This study investigated how the structural properties of 10 model compounds representing natural organic matter (NOM) influenced their adsorption to chloride green rust (GR-Cl), and how this adsorption affected rate constants for transformation of carbon tetrachloride (CT) by GR-Cl. The affinity of benzoic acid, phthalic acid, trimesic acid, pyromellitic acid, and mellitic acid for the GR-Cl surface generally increased in the order of increasing number of carboxylic acid functional groups, increasing acidity of these functional groups, and increasing charge density.

View Article and Find Full Text PDF

Rates and products of abiotic mineral-mediated carbon tetrachloride (CT) transformation were measured in microcosms prepared from natural soils and sediments that were incubated under iron-reducing and sulfate-reducing conditions, then sterilized to inhibit microbial activity. For one set of microcosms, the rate of CT disappearance was correlated with the concentration of weakly bound (MgCl2 extractable) Fe(II) in an experiment in which CT was repeatedly spiked into the microcosms. When pooling the results from all microcosms, however, there was no statistically significant positive correlation between CT transformation rate and the concentration of weakly bound Fe(II) or any other mineral species.

View Article and Find Full Text PDF

Reductive dechlorination of tetrachloroethylene (PCE) and trichloroethylene (TCE) was studied in well-defined microcosms prepared with aquifer materials from three locations. Electron donors and terminal electron acceptors were added to both stimulate microbial activity and generate reactive minerals via microbial iron and sulfate reduction. The relative importance of abiotic and microbial PCE and TCE reductive dechlorination was then assessed by analysis of reaction products and kinetics and, in some cases, by stable carbon isotope fractionation.

View Article and Find Full Text PDF

The kinetics and in some cases stable carbon isotope fractionation associated with abiotic reductive dechlorination of tetrachloroethylene (PCE) and trichloroethylene (TCE) by model Fe(II)-bearing minerals present in anaerobic soils were measured. The minerals studied were chloride green rust (GR-Cl), sulfate green rust (GR-SO(4)), pyrite, magnetite, and adsorbed Fe(II) or FeS formed at the surface of goethite by treatment with dissolved Fe(II) or S(-II). We observed some abiotic transformation of PCE and TCE in every system studied, as evidenced by the presence of abiotic reaction products.

View Article and Find Full Text PDF

This study investigated the TiO2 photocatalytic degradation of aqueous ammonia (NH4+/NH3) in the presence of surfactants and monosaccharides at pH approximately 10.1. Initial rates of NH4+/NH3 photocatalytic degradation decreased by approximately 50-90% in the presence of anionic, cationic, and nonionic surfactants and monosaccharides.

View Article and Find Full Text PDF

Significant carbon isotope fractionation was observed during FeS-mediated reductive dechlorination of tetrachloroethylene (PCE) and trichloroethylene (TCE). Bulk enrichment factors (E(bulk)) for PCE were -30.2 +/- 4.

View Article and Find Full Text PDF

The objective of this research was to identify the dissolved species or solid phase mineral fraction(s) best correlated with rates of carbon tetrachloride (CT) reductive transformation in systems modeling sulfate-reducing and iron oxide-rich soils and sediments. We used sulfide (S(-II))-treated goethite as our model system, but also studied Fe(II) and S(-II)-treated goethite, Fe(II)-treated goethite, pure FeS, and Fe(II)-treated FeS in order to isolate and evaluate the influence of different mineral fractions on reaction rates. Initial rates of CT transformation were measured for different pH values and concentrations of added Fe(II), as well as different aging times and conditions.

View Article and Find Full Text PDF

Batch experiments were conducted to study the effects of titanium dioxide (TiO2) concentration and pH on the initial rates of photocatalytic oxidation of aqueous ammonium/ ammonia (NH4+/NH3) and nitrite (NO2-) in UV-illuminated TiO2 suspensions. While no simple kinetic model could fit the data at lower TiO2 concentrations, at TiO2 concentrations > or = 1 g/L, the experimental data were consistent with a model assuming consecutive first-order transformation of NH4+/NH3 to NO2- and NO2- to nitrate (NO3-). For TiO2 concentrations > or = 1 g/L, the rate constants for NO2 photocatalytic oxidation to NO3 were far more dependent on TiO2 concentration than were those for NH4+/NH3 oxidation to NO2-, suggesting that, without sufficient TiO2, complete oxidation of NH4+/NH3 to NO3- will not occur.

View Article and Find Full Text PDF

Carbon tetrachloride (CT) batch degradation experiments by four commercial irons at neutral pH indicated that iron metal (Fe0) purity affected both rates and products of CT transformation in anaerobic systems. Surface-area-normalized rate constants and elemental composition analysis of the untreated metals indicate that the highest-purity, least-oxidized Fe0 was the most reactive on a surface-area-normalized basis in transforming CT. There was also a trend of increasing yield of the hydrogenolysis product chloroform (CF) with increasing Fe0 purity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session33oe7uqrib3u74f2jimkstbb38nle5qn): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once