Publications by authors named "Elizabeth Bullitt"

Glioblastoma (GBM), the most common brain malignancy, remains fatal with no effective treatment. Analyses of common aberrations in GBM suggest major regulatory pathways associated with disease etiology. However, 90% of GBMs are diagnosed at an advanced stage (primary GBMs), providing no access to early disease stages for assessing disease progression events.

View Article and Find Full Text PDF

Unlabelled: Treatments for women with recurrent brain metastases from breast cancer are limited. In this phase II study,we administered sagopilone to patients with breast cancer and brain metastases. We observed modest activity with a central nervous system objective response rate of 13.

View Article and Find Full Text PDF

HIV associated dementia (HAD) is the most advanced stage of central nervous system disease caused by HIV infection. Previous studies have demonstrated that patients with HAD exhibit greater cerebral and basal ganglia atrophy than non-demented HIV+ (HND) patients. However, the extent to which white matter is affected in HAD patients compared to HND patients remains elusive.

View Article and Find Full Text PDF

Creation of a transjugular intrahepatic portosystemic shunt (TIPS) requires passage of a needle toward a moving target that is only seen transiently by X-ray prior to needle passage. Intraoperative, 3D target localization would facilitate target access and improve the safety of the procedure. The clinical assumption is that patients undergoing the TIPS procedure possess rigid, cirrhotic livers that undergo only intraoperative translation without significant deformation or rotation.

View Article and Find Full Text PDF

Obtaining validation data and comparison metrics for segmentation of magnetic resonance images (MRI) are difficult tasks due to the lack of reliable ground truth. This problem is even more evident for images presenting pathology, which can both alter tissue appearance through infiltration and cause geometric distortions. Systems for generating synthetic images with user-defined degradation by noise and intensity inhomogeneity offer the possibility for testing and comparison of segmentation methods.

View Article and Find Full Text PDF

It has been shown that brain structures in normal aging undergo significant changes attributed to neurodevelopmental and neurodegeneration processes as a lifelong, dynamic process. Modeling changes in healthy aging will be necessary to explain differences to neurodegenerative patterns observed in mental illness and neurological disease. Driving application is the analysis of brain white matter properties as a function of age, given a database of diffusion tensor images (DTI) of 86 subjects well-balanced across adulthood.

View Article and Find Full Text PDF

A patient with glioblastoma multiforme underwent serial computerized analysis of tumor-associated vasculature defined from magnetic resonance angiographic (MRA) scans obtained over almost a four year period. The clinical course included tumor resection with subsequent radiation therapy, a long symptom-free interval, emergence of a new malignant focus, resection of that focus, a stroke, and treatment with chemotherapy and anti-angiogenic therapy. Image analysis methods included segmentation of vessels from each MRA and statistical comparison of vessel morphology over 4 regions of interest (the initial tumor site, the second tumor site, a distant control region, and the entire brain) to the same 4 regions of interest in 50 healthy volunteers (26 females and 24 males; mean age 39 years).

View Article and Find Full Text PDF

Histological and magnetic resonance imaging studies have demonstrated that age-associated alterations of the human brain may be at least partially related to vascular alterations. Relatively little information has been published on vascular changes associated with healthy aging, however. The study presented in this paper examined vessels segmented from standardized, high-resolution, magnetic resonance angiograms (MRAs) of 100 healthy volunteers (50 males, 50 females), aged 18-74, without hypertension or other disease likely to affect the vasculature.

View Article and Find Full Text PDF

Purpose: One third of women with advanced human epidermal growth factor receptor 2 (HER-2)-positive breast cancer develop brain metastases; a subset progress in the CNS despite standard approaches. Medical therapies for refractory brain metastases are neither well-studied nor established. We evaluated the safety and efficacy of lapatinib, an oral inhibitor of epidermal growth factor receptor (EGFR) and HER-2, in patients with HER-2-positive brain metastases.

View Article and Find Full Text PDF

In the United States it is not allowed to make public any patient-specific information without the patient's consent. This ruling has led to difficulty for those interested in sharing three-dimensional (3D) images of the head and brain since a patient's face might be recognized from a 3D rendering of the skin surface. Approaches employed to date have included brain stripping and total removal of the face anterior to a cut plane, each of which lose potentially important anatomical information about the skull surface, air sinuses, and orbits.

View Article and Find Full Text PDF

Purpose: To prospectively determine if magnetic resonance (MR) angiography can depict intracranial vascular morphologic changes during treatment of brain metastases from breast cancer and if serial quantitative vessel tortuosity measurements can be used to predict tumor treatment response sooner than traditional methods.

Materials And Methods: Institutional review board approval and informed consent were obtained for this HIPAA-compliant study. Twenty-two women aged 31-61 years underwent brain MR angiography prior to and 2 months after initiation of lapatinib therapy for brain metastases from breast cancer.

View Article and Find Full Text PDF

There is currently no noninvasive, reliable method of assessing brain tumor malignancy or of monitoring tumor treatment response. Monitoring changes to tumor vasculature might provide an effective means of assessing both tumor aggressiveness and treatment efficacy. To date, most such research has concentrated upon tumor "microvascular" imaging, with permeability and/or perfusion imaging used to assess vessel changes at the subvoxel level.

View Article and Find Full Text PDF

We have developed a novel model-to-image registration technique which aligns a 3-dimensional model of vasculature with two semiorthogonal fluoroscopic projections. Our vascular registration method is used to intra-operatively initialize the alignment of a catheter and a preoperative vascular model in the context of image-guided TIPS (Transjugular, Intrahepatic, Portosystemic Shunt formation) surgery. Registration optimization is driven by the intensity information from the projection pairs at sample points along the centerlines of the model.

View Article and Find Full Text PDF

No current non-invasive method is capable of assessing the efficacy of brain tumor therapy early during treatment. We outline an approach that evaluates tumor activity via statistical analysis of vessel shape using vessels segmented from MRA. This report is the first to describe the changes in vessel shape that occur during treatment of metastatic brain tumors as assessed by sequential MRA.

View Article and Find Full Text PDF

Accurate 3D/2D vessel registration is complicated by issues of image quality, occlusion, and other problems. This study performs a quantitative comparison of 3D/2D vessel registration in which vessels segmented from preoperative CT or MR are registered with biplane x-ray angiograms by either a) simultaneous two-view registration with advance calculation of the relative pose of the two views, or b) sequential registration with each view. We conclude on the basis of phantom studies that, even in the absence of image errors, simultaneous two-view registration is more accurate than sequential registration.

View Article and Find Full Text PDF

A publicly available database of high-quality, multi-modal MR brain images of carefully screened healthy subjects, equally divided by sex, and with an equal number of subjects per age decade, would be of high value to investigators interested in the statistical study of disease. This report describes initial use of an accumulating healthy database currently comprising 50 subjects aged 20-72. We examine changes by age and sex to the volumes of gray matter, white matter and cerebrospinal fluid for subjects within the database.

View Article and Find Full Text PDF

Graph methods that summarize vasculature by its branching topology are not sufficient for the statistical characterization of a population of intra-cranial vascular networks. Intra-cranial vascular networks are typified by topological variations and long, wandering paths between branch points. We present a graph-based representation, called spatial graphs, that captures both the branching patterns and the spatial locations of vascular networks.

View Article and Find Full Text PDF

Validation and method of comparison for segmentation of magnetic resonance images (MRI) presenting pathology is a challenging task due to the lack of reliable ground truth. We propose a new method for generating synthetic multi-modal 3D brain MRI with tumor and edema, along with the ground truth. Tumor mass effect is modeled using a biomechanical model, while tumor and edema infiltration is modeled as a reaction-diffusion process that is guided by a modified diffusion tensor MRI.

View Article and Find Full Text PDF

Transjugular intrahepatic portosystemic shunt formation (TIPS) is an effective treatment for portal hypertension [LaBerge 1995]. The procedure requires the insertion of a needle through the liver to connect the hepatic and portal veins. This operation is traditionally guided by fluoroscopic images that do not show the location of the target veins during needle insertion.

View Article and Find Full Text PDF

Rationale And Objectives: Malignancy provokes regional changes to vessel shape. Characteristic vessel tortuosity abnormalities appear early during tumor development, affect initially healthy vessels, spread beyond the confines of tumor margins, and do not simply mirror tissue perfusion. The ability to detect and quantify tortuosity abnormalities on high-resolution magnetic resonance angiography (MRA) images offers a new approach to the noninvasive diagnosis of malignancy.

View Article and Find Full Text PDF

Previous research on the vasculature of tumor-bearing animals has focused upon the microvasculature. Magnetic resonance angiography (MRA) offers a noninvasive, complementary approach that provides information about larger vessels. Quantitative analysis of MRA images of spontaneous preclinical tumor models has not been previously reported.

View Article and Find Full Text PDF

In this paper, we present a Bayesian framework for both generating inter-subject large deformation transformations between two multi-modal image sets of the brain and for forming multi-class brain atlases. In this framework, the estimated transformations are generated using maximal information about the underlying neuroanatomy present in each of the different modalities. This modality independent registration framework is achieved by jointly estimating the posterior probabilities associated with the multi-modal image sets and the high-dimensional registration transformations mapping these posteriors.

View Article and Find Full Text PDF

Almost all diseases affect blood vessel attributes (vessel number, radius, tortuosity, and branching pattern). Quantitative measurement of vessel attributes over relevant vessel populations could thus provide an important means of diagnosing and staging disease. Unfortunately, little is known about the statistical properties of vessel attributes.

View Article and Find Full Text PDF

Advances in noninvasive imaging techniques such as magnetic resonance perfusion imaging have been found useful in grading cerebral neoplasms and have potential for significant clinical benefit. The purpose of this study was to determine the correlation between tumor vessel tortuosity as measured from vessels extracted from magnetic resonance angiograms (MRA) and perfusion parameters of cerebral blood flow (CBF) and cerebral blood volume (CBV) in intracranial neoplasms. We hypothesized that tumor blood vessel tortuosity measures and perfusion measures would be correlated, since both are increased by tumor angiogenesis.

View Article and Find Full Text PDF

Despite multiple advances in medical imaging, noninvasive monitoring of therapeutic efficacy for malignant gliomas remains problematic. An underutilized observation is that malignancy induces characteristic abnormalities of vessel shape. These characteristic shape abnormalities affect both capillaries and much larger vessels in the tumor vicinity, involve larger vessels prior to sprout formation, and are generally not present in hypervascular benign tumors.

View Article and Find Full Text PDF