This study directly compares morphological features of the mouse heart in its end-relaxed state based on constructed morphometric maps and atlases using principal component analysis in C57BL/6J (n=8) and DBA (n=5) mice. In probabilistic atlases, a gradient probability exists for both strains in longitudinal locations from base to apex. Based on the statistical atlases, differences in size (49.
View Article and Find Full Text PDFMR microscopy has enormous potential for small-animal cardiac imaging because it is capable of producing volumetric images at multiple time points to accurately measure cardiac function. MR has not been used as frequently as ultrasound to measure cardiac function in the small animal because the MR methods required relatively long scan times, limiting throughput. Here, we demonstrate four-dimensional radial acquisition in conjunction with a liposomal blood pool agent to explore functional differences in three populations of mice: six C57BL/6J mice, six DBA/2J mice, and six DBA/2J CSQ+ mice, all with the same gestational age and approximately the same weight.
View Article and Find Full Text PDFMagnetic resonance microscopy (MRM) has become an important tool for small animal cardiac imaging. In relation to competing technologies (microCT and ultrasound), MR is limited by spatial resolution, temporal resolution, and acquisition time. All three of these limitations have been addressed by developing a four-dimensional (4D) (3D plus time) radial acquisition (RA) sequence.
View Article and Find Full Text PDFTwo-dimensional intersecting k-space trajectories have previously been demonstrated to allow fast multispectral imaging. Repeated sampling of k-space points leads to destructive interference of the signal coming from the off-resonance spectral peaks; on-resonance data reconstruction yields images of the on-resonance peak, with some of the off-resonance energy being spread as noise in the image. A shift of the k-space data by a given off-resonance frequency brings a second frequency of interest on resonance, allowing the reconstruction of a second spectral peak from the same k-space data.
View Article and Find Full Text PDFSmall animal magnetic resonance microscopy (MRM) has evolved significantly from testing the boundaries of imaging physics to its expanding use today as a tool in noninvasive biomedical investigations. MRM now increasingly provides functional information about living animals, with images of the beating heart, breathing lung, and functioning brain. Unlike clinical MRI, where the focus is on diagnosis, MRM is used to reveal fundamental biology or to noninvasively measure subtle changes in the structure or function of organs during disease progression or in response to experimental therapies.
View Article and Find Full Text PDFSmall animal imaging has a critical role in phenotyping, drug discovery, and in providing a basic understanding of mechanisms of disease. Translating imaging methods from humans to small animals is not an easy task. The purpose of this work is to compare two cardiac imaging modalities, i.
View Article and Find Full Text PDF