Extended-duration human spaceflight necessitates a better understanding of the physiological impacts of microgravity. While the ground-based microgravity simulations identified low intensity vibration (LIV) as a possible countermeasure, how cells may respond to LIV under real microgravity remain unexplored. In this way, adaptation of LIV bioreactors for space remains limited, resulting in a significant gap in microgravity research.
View Article and Find Full Text PDFEmbryonic stem cells (ESCs) exhibit unique attributes of boundless self-renewal and pluripotency, making them invaluable for fundamental investigations and clinical endeavors. Previous examinations of microgravity effects on ESC self-renewal and differentiation have predominantly maintained a descriptive nature, constrained by limited experimental opportunities and techniques. In this investigation, we present compelling evidence derived from murine and human ESCs, demonstrating that simulated microgravity (SMG)-induced stress significantly impacts self-renewal and pluripotency through a previously unidentified conserved mechanism.
View Article and Find Full Text PDFThe advent of extended-duration human spaceflight demands a better comprehension of the physiological impacts of microgravity. One primary concern is the adverse impact on the musculoskeletal system, including muscle atrophy and bone density reduction. Ground-based microgravity simulations have provided insights, with vibrational bioreactors emerging as potential mitigators of these negative effects.
View Article and Find Full Text PDFHyaluronan, a glycosaminoglycan synthesized by three isoenzymes (Has1, Has2, Has3), is known to play a role in regulating bone turnover, remodeling, and mineralization, which in turn can affect bone quality and strength. The goal of this study is to characterize how the loss of Has1 or Has3 affects the morphology, matrix properties, and overall strength of murine bone. Femora were isolated from Has1, Has3, and wildtype (WT) C57Bl/6 J female mice and were analyzed using microcomputed-tomography, confocal Raman spectroscopy, three-point bending, and nanoindentation.
View Article and Find Full Text PDFSynovial fluid is composed of hyaluronan and proteoglycan-4 (PRG4 or lubricin), which work synergistically to maintain joint lubrication. In diseases like osteoarthritis, hyaluronan and PRG4 concentrations can be altered, resulting in lowered synovial fluid viscosity, and pro-inflammatory cytokine concentrations within the synovial fluid increase. Synovial fibroblasts within the synovium are responsible for contributing to synovial fluid and can be targeted to improve endogenous production of hyaluronan and PRG4 and to alter the cytokine profile.
View Article and Find Full Text PDFCDKN1A/P21 is a potent inhibitor of cell cycle progression and its overexpression is thought to be associated with inhibition of normal bone regenerative osteogenesis during spaceflight. To test whether CDKN1A/P21 regulates osteogenesis in response to mechanical loading we studied cyclic stretch versus static culture of Cdkn1a (null) or wildtype primary mouse bone marrow osteoprogenitors during 21-day ex-vivo mineralization assays. Cyclically stretched Cdkn1a cells are 3.
View Article and Find Full Text PDFJ Environ Sci Health C Toxicol Carcinog
September 2021
Both microgravity and radiation exposure in the spaceflight environment have been identified as hazards to astronaut health and performance. Substantial study has been focused on understanding the biology and risks associated with prolonged exposure to microgravity, and the hazards presented by radiation from galactic cosmic rays (GCR) and solar particle events (SPEs) outside of low earth orbit (LEO). To date, the majority of the ground-based analogues (e.
View Article and Find Full Text PDFWith the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes.
View Article and Find Full Text PDFSpace radiation inhibits angiogenesis by two mechanisms depending on the linear energy transfer (LET). Using human 3D micro-vessel models, blockage of the early motile stage of angiogenesis was determined to occur after exposure to low LET ions (<3 KeV/AMU), whereas inhibition of the later stages occurs after exposure to high LET ions (>8 KeV/AMU). Strikingly, the combined effect is synergistic, detectible as low as 0.
View Article and Find Full Text PDFSpaceflight missions can cause immune system dysfunction in astronauts with little understanding of immune outcomes in deep space. This study assessed immune responses in mice following ground-based, simulated deep spaceflight conditions, compared with data from astronauts on International Space Station missions. For ground studies, we simulated microgravity using the hindlimb unloaded mouse model alone or in combination with acute simulated galactic cosmic rays or solar particle events irradiation.
View Article and Find Full Text PDFWe have identified and validated a spaceflight-associated microRNA (miRNA) signature that is shared by rodents and humans in response to simulated, short-duration and long-duration spaceflight. Previous studies have identified miRNAs that regulate rodent responses to spaceflight in low-Earth orbit, and we have confirmed the expression of these proposed spaceflight-associated miRNAs in rodents reacting to simulated spaceflight conditions. Moreover, astronaut samples from the NASA Twins Study confirmed these expression signatures in miRNA sequencing, single-cell RNA sequencing (scRNA-seq), and single-cell assay for transposase accessible chromatin (scATAC-seq) data.
View Article and Find Full Text PDFBone fractures often result in complications that require surgical intervention to promote fracture healing. Tissue engineering seeks to alleviate the need for autologous bone grafting by utilizing scaffolds that can promote bone fracture healing. Plant-derived materials are desirable biomaterials because of their biodegradability, availability, and low immunogenicity.
View Article and Find Full Text PDFIncreased oxidative stress is an unavoidable consequence of exposure to the space environment. Our previous studies showed that mice exposed to space for 13.5 days had decreased glutathione levels, suggesting impairments in oxidative defense.
View Article and Find Full Text PDFThe International Space Station (ISS) National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit.
View Article and Find Full Text PDFMechanical unloading in microgravity is thought to induce tissue degeneration by various mechanisms, including inhibition of regenerative stem cell differentiation. To address this hypothesis, we investigated the effects of microgravity on early lineage commitment of mouse embryonic stem cells (mESCs) using the embryoid body (EB) model of tissue differentiation. We found that exposure to microgravity for 15 days inhibits mESC differentiation and expression of terminal germ layer lineage markers in EBs.
View Article and Find Full Text PDFExposure to microgravity causes significant mechanical unloading of mammalian tissues, resulting in rapid alterations of their physiology, which poses a significant risk for long-duration manned spaceflight. The immediate degenerative effects of spaceflight we understand best are those studied during short-term low-Earth-orbit experiments, and include rapid microgravity-adaptive bone and muscle loss, loss of cardiovascular capacity, defects in wound and bone fracture healing, and impaired immune function. Over the long-term, exposure to microgravity may cause severe deficits in mammalian stem cell-based tissue regenerative health, including, osteogenesis, hematopoiesis, and lymphopoeisis, as well as cause significant stem cell-based tissue degeneration in amphibian tail and lens regeneration.
View Article and Find Full Text PDFBone is a dynamically remodeled tissue that requires gravity-mediated mechanical stimulation for maintenance of mineral content and structure. Homeostasis in bone occurs through a balance in the activities and signaling of osteoclasts, osteoblasts, and osteocytes, as well as proliferation and differentiation of their stem cell progenitors. Microgravity and unloading are known to cause osteoclast-mediated bone resorption; however, we hypothesize that osteocytic osteolysis, and cell cycle arrest during osteogenesis may also contribute to bone loss in space.
View Article and Find Full Text PDFFor thousands of years different cultures around the world have assigned their own meaning to the Universe. Through research and technology, we have begun to understand the nature and mysteries of the Cosmos. Last year marked the 40(th) anniversary of our first steps on the Moon, and within two decades it is hoped that humankind will have established a settlement on Mars.
View Article and Find Full Text PDF