Publications by authors named "Elizabeth Bealer"

Pluripotent stem cell (SC)-derived islets offer hope as a renewable source for β cell replacement for type 1 diabetes (T1D), yet functional and metabolic immaturity may limit their long-term therapeutic potential. Here, we show that limitations in mitochondrial transcriptional programming impede the formation and maturation of SC-derived β (SC-β) cells. Utilizing transcriptomic profiling, assessments of chromatin accessibility, mitochondrial phenotyping, and lipidomics analyses, we observed that SC-β cells exhibit reduced oxidative and mitochondrial fatty acid metabolism compared to primary human islets that are related to limitations in key mitochondrial transcriptional networks.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) prevention is currently limited by the lack of diagnostic tools able to identify disease before autoimmune destruction of the pancreatic β cells. Autoantibody tests are used to predict risk and, in combination with glucose dysregulation indicative of β cell loss, to determine administration of immunotherapies. Our objective was to remotely identify immune changes associated with the disease, and we have employed a subcutaneously implanted microporous poly(e-caprolactone) (PCL) scaffold to function as an immunological niche (IN) in two models of T1D.

View Article and Find Full Text PDF
Article Synopsis
  • Food allergies are serious medical conditions driven by harmful immune responses to certain foods, with current treatments often being long and only temporarily effective.
  • Researchers are investigating the use of nanoparticles that encapsulate allergens to directly suppress the harmful immune cells (Th2 cells) responsible for allergic reactions.
  • In mouse studies, administering these nanoparticles showed promising results by significantly reducing severe allergic reactions and reprogramming the immune response to be less reactive to allergens.
View Article and Find Full Text PDF

Metastatic breast cancer is often not diagnosed until secondary tumors have become macroscopically visible and millions of tumor cells have invaded distant tissues. Yet, metastasis is initiated by a cascade of events leading to formation of the pre-metastatic niche, which can precede tumor formation by a matter of years. We aimed to distinguish the potential for metastatic disease from nonmetastatic disease at early times in triple-negative breast cancer using sister cell lines 4T1 (metastatic), 4T07 (invasive, nonmetastatic), and 67NR (nonmetastatic).

View Article and Find Full Text PDF

Stem cell differentiation methods have been developed to produce cells capable of insulin secretion which are showing promise in clinical trials for treatment of type-1 diabetes. Nevertheless, opportunities remain to improve cell maturation and function. Three-dimensional (3D) culture has demonstrated improved differentiation and metabolic function in organoid systems, with biomaterial scaffolds employed to direct cell assembly and facilitate cell-cell contacts.

View Article and Find Full Text PDF

Stem cell derived β-cells have demonstrated the potential to control blood glucose levels and represent a promising treatment for Type 1 diabetes (T1D). Early engraftment post-transplantation and subsequent maturation of these β-cells are hypothesized to be limited by the initial inflammatory response, which impacts the ability to sustain normoglycemia for long periods. We investigated the survival and development of immature hPSC-derived β-cells transplanted on poly(lactide--glycolide) (PLG) microporous scaffolds into the peritoneal fat, a site being considered for clinical translation.

View Article and Find Full Text PDF

The direct modulation of T cell responses is an emerging therapeutic strategy with the potential to modulate undesired immune responses including, autoimmune disease, and allogeneic cells transplantation. We have previously demonstrated that poly(lactide-co-glycolide) particles were able to modulate T cell responses indirectly through antigen-presenting cells (APCs). In this report, we investigated the design of nanoparticles that can directly interact and modulate T cells by coating the membranes from APCs onto nanoparticles to form membrane-coated nanoparticles (MCNPs).

View Article and Find Full Text PDF

The growing number of commercially used chemicals that are under-evaluated for developmental neurotoxicity (DNT) combined with the difficulty in describing the etiology of exposure-related neurodevelopmental toxicity has created a reticent threat to human health. Current means of screening chemicals for DNT are limited to expensive, time-consuming, and labor-intensive traditional laboratory animal models. In this study, we hypothesize that exposed head-regenerating planarian flatworms can effectively and efficiently categorize DNT in known developmental neurotoxins (ethanol and bisphenol A [BPA]).

View Article and Find Full Text PDF

Protein-polysaccharide composites have been known to show a wide range of applications in biomedical and green chemical fields. These composites have been fabricated into a variety of forms, such as films, fibers, particles, and gels, dependent upon their specific applications. Post treatments of these composites, such as enhancing chemical and physical changes, have been shown to favorably alter their structure and properties, allowing for specificity of medical treatments.

View Article and Find Full Text PDF

The combination of protein and polysaccharides with magnetic materials has been implemented in biomedical applications for decades. Proteins such as silk, collagen, and elastin and polysaccharides such as chitosan, cellulose, and alginate have been heavily used in composite biomaterials. The wide diversity in the structure of the materials including their primary monomer/amino acid sequences allow for tunable properties.

View Article and Find Full Text PDF