Publications by authors named "Elizabeth Batsel"

The ability of neurons to sense and respond to damage is crucial for maintaining homeostasis and facilitating nervous system repair. For some cell types, notably dorsal root ganglia (DRG) and retinal ganglion cells (RGCs), extensive profiling has uncovered a significant transcriptional response to axon injury, which influences survival and regenerative outcomes. In contrast, the injury responses of most supraspinal cell types, which display limited regeneration after spinal damage, remain mostly unknown.

View Article and Find Full Text PDF

The ability of neurons to sense and respond to damage is fundamental to homeostasis and nervous system repair. For some cell types, notably dorsal root ganglia (DRG) and retinal ganglion cells (RGCs), extensive profiling has revealed a large transcriptional response to axon injury that determines survival and regenerative outcomes. In contrast, the injury response of most supraspinal cell types, whose limited regeneration constrains recovery from spinal injury, is mostly unknown.

View Article and Find Full Text PDF

The supraspinal connectome consists of dozens of neuronal populations that project axons from the brain to the spinal cord to influence a wide range of motor, autonomic, and sensory functions. The complexity and wide distribution of supraspinal neurons present significant technical challenges, leading most spinal cord injury research to focus on a handful of major pathways such as the corticospinal, rubrospinal, and raphespinal. Much less is known about many additional populations that carry information to modulate or compensate for these main pathways, or which carry pre-autonomic and other information of high value to individuals with spinal injury.

View Article and Find Full Text PDF