Brains contain networks of interconnected neurons and so knowing the network architecture is essential for understanding brain function. We therefore mapped the synaptic-resolution connectome of an entire insect brain ( larva) with rich behavior, including learning, value computation, and action selection, comprising 3016 neurons and 548,000 synapses. We characterized neuron types, hubs, feedforward and feedback pathways, as well as cross-hemisphere and brain-nerve cord interactions.
View Article and Find Full Text PDFSince the Cambrian, animals diversified from a few body forms or bauplans, into many extinct and all extant species. A characteristic neural architecture serves each bauplan. How the connectome of each animal differs from that of closely related species or whether it converged into an optimal architecture shared with more distant ones is unknown.
View Article and Find Full Text PDFHypothesis: Contact angle measurements alongside Young's equation have been frequently used to quantitatively characterize the wettabilities of solid surfaces. In the literature, the Wenzel and Cassie-Baxter models have been proposed to account for surface roughness and chemical heterogeneity, while precursor film models have been developed to account for stress singularity. However, the majority of these models were derived based on theoretical analysis or indirect experimental measurements.
View Article and Find Full Text PDFThe occurrence of capillary condensation is often ignored in many naturally occurring nanoporous media, such as shale rock, simply because their isotherms do not adhere to the prescribed shapes presented in the literature. In particular, it is apparent from the literature that most shale isotherms do not display a clear capillary condensation step, which is commonly observed for much simpler adsorbents, such as MCM-41. We contend that the absence of this step from the isotherms for natural adsorbents is not due to the absence of nanoconfinement-induced phase behavior.
View Article and Find Full Text PDFWe use the comparison of experimentally measured isotherms for propane, n-butane, and n-pentane in 2.90, 4.19, and 8.
View Article and Find Full Text PDFConfinement in nanopores can significantly impact the chemical and physical behavior of fluids. While some quantitative understanding is available for how pure fluids behave in nanopores, there is little such insight for mixtures. This study aims to shed light on how nanoporosity impacts the phase behavior and composition of confined mixtures through comparison of the effects of static and dynamic equilibrium on experimentally measured isotherms and chromatographic analysis of the experimental fluids.
View Article and Find Full Text PDF