In this issue of Molecular Cell, Yang and colleagues discover age-dependent increases in broad regions of the repressive histone modification H3K27me3. They also demonstrate partial reversion to younger H3K27me3 patterns and gene expression upon resection of older livers.
View Article and Find Full Text PDFBackground: The evolution of multicellularity is a critical event that remains incompletely understood. We use the social amoeba, Dictyostelium discoideum, one of the rare organisms that readily transits back and forth between both unicellular and multicellular stages, to examine the role of epigenetics in regulating multicellularity.
Results: While transitioning to multicellular states, patterns of H3K4 methylation and H3K27 acetylation significantly change.