The liver restores its mass and architecture after injury. Yet, investigating morphogenetic cell behaviours and signals that repair tissue architecture at high spatiotemporal resolution remains challenging. We developed LiverZap, a tuneable chemoptogenetic liver injury model in zebrafish.
View Article and Find Full Text PDFGlycan-protein interactions facilitate some of the most important biomolecular processes in and between cells. They are involved in different cellular pathways, cell-cell interactions and associated with many diseases, making these interactions of great interest. However, their structural and functional diversity poses great challenges in studying them at the molecular level.
View Article and Find Full Text PDFSmall molecule target identification is a critical step in modern antibacterial drug discovery, particularly against multi-drug resistant pathogens. Albocycline (ALB) is a macrolactone natural product with potent activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) whose mechanism of action has been elusive to date.
View Article and Find Full Text PDFBacterial peptidoglycan (PG) is recognized by the human innate immune system to generate an appropriate response. To gain an appreciation of how this essential polymer is sensed, a surface plasmon resonance (SPR) assay using varied PG surface presentation was developed. PG derivatives were synthesized and immobilized on the surface at different positions on the molecule to assess effects of ligand orientation on the binding affinities of NOD-like receptors (NLRs).
View Article and Find Full Text PDFThe adsorption of amyloidogenic peptides, amyloid beta 1-40 (Aβ), alpha-synuclein (α-syn), and beta 2 microglobulin (β2m), was attempted over the surface of nano-gold colloidal particles, ranging from d = 10 to 100 nm in diameter (). The spectroscopic inspection between pH 2 and pH 12 successfully extracted the critical pH point (pH) at which the color change of the amyloidogenic peptide-coated nano-gold colloids occurred due to aggregation of the nano-gold colloids. The change in surface property caused by the degree of peptide coverage was hypothesized to reflect the ΔpH, which is the difference in pH between bare gold colloids and peptide coated gold colloids.
View Article and Find Full Text PDFWhile lower vertebrates contain adult stem cells (aSCs) that maintain homeostasis and drive un-exhaustive organismal growth, mammalian aSCs display mainly the homeostatic function. Here, we use lineage analysis in the medaka fish gill to address aSCs and report separate stem cell populations for homeostasis and growth. These aSCs are fate-restricted during the entire post-embryonic life and even during re-generation paradigms.
View Article and Find Full Text PDFThe innate immune system is the body's first defense against invading microorganisms, relying on the recognition of bacterial-derived small molecules by host protein receptors. This recognition event and downstream immune response rely heavily on the specific chemical features of both the innate immune receptors and their bacterial derived ligands. This review presents a chemist's perspective on some of the most crucial and complex components of two receptors (NOD1 and NOD2): starting from the structural and chemical characteristics of bacterial-derived small molecules, to the specific proposed models of molecular recognition of these molecules by immune receptors, to the subsequent post-translational modifications that ultimately dictate downstream immune signaling.
View Article and Find Full Text PDFThe vertebrate eye originates from the eye field, a domain of cells specified by a small number of transcription factors. In this study, we show that Tcf7l1a is one such transcription factor that acts cell-autonomously to specify the eye field in zebrafish. Despite the much-reduced eye field in mutants, these fish develop normal eyes revealing a striking ability of the eye to recover from a severe early phenotype.
View Article and Find Full Text PDFThe innate immune system's interaction with bacterial cells plays a pivotal role in a variety of human diseases. Carbohydrate units derived from a component of bacterial cell wall, peptidoglycan (PG), are known to stimulate an immune response. Nonetheless, access to modified late-stage peptidoglycan intermediates is limited due to their synthetic complexity.
View Article and Find Full Text PDFUridine diphosphate N-acetyl muramic acid (UDP NAM) is a critical intermediate in bacterial peptidoglycan (PG) biosynthesis. As the primary source of muramic acid that shapes the PG backbone, modifications installed at the UDP NAM intermediate can be used to selectively tag and manipulate this polymer via metabolic incorporation. However, synthetic and purification strategies to access large quantities of these PG building blocks, as well as their derivatives, are challenging.
View Article and Find Full Text PDFAntibiotic resistance is a serious threat to global public health, and methicillin-resistant Staphylococcus aureus (MRSA) is a poignant example. The macrolactone natural product albocycline, derived from various Streptomyces strains, was recently identified as a promising antibiotic candidate for the treatment of both MRSA and vancomycin-resistant S. aureus (VRSA), which is another clinically relevant and antibiotic resistant strain.
View Article and Find Full Text PDFThe entire lung epithelium arises from SRY box 9 (SOX9)-expressing progenitors that form the respiratory tree and differentiate into airway and alveolar cells. Despite progress in understanding their initial specification within the embryonic foregut, how these progenitors are subsequently maintained is less clear. Using inducible, progenitor-specific genetic mosaic mouse models, we showed that β-catenin (CTNNB1) maintains lung progenitors by promoting a hierarchical lung progenitor gene signature, suppressing gastrointestinal (GI) genes, and regulating NK2 homeobox 1 (NKX2.
View Article and Find Full Text PDFMost organs rely on stem cells to maintain homeostasis during post-embryonic life. Typically, stem cells of independent lineages work coordinately within mature organs to ensure proper ratios of cell types. Little is known, however, on how these different stem cells locate to forming organs during development.
View Article and Find Full Text PDFAnimal organs are typically formed during embryogenesis by following one specific developmental programme. Here, we report that neuromast organs are generated by two distinct and sequential programmes that result in parallel sensory lines in medaka embryos. A ventral posterior lateral line (pLL) is composed of neuromasts deposited by collectively migrating cells whereas a midline pLL is formed by individually migrating cells.
View Article and Find Full Text PDFGenetic mutations in the innate immune receptor nucleotide-binding oligomerization domain-containing 2 (Nod2) have demonstrated increased susceptibility to Crohn's disease, an inflammatory bowel disease that is hypothesized to be accompanied by changes in the gut microbiota. Nod2 responds to the presence of bacteria, specifically a fragment of the bacterial cell wall, muramyl dipeptide (MDP). The proposed site of this interaction is the leucine-rich repeat (LRR) domain.
View Article and Find Full Text PDF