Nature employs protein aggregates when strong materials are needed to adhere surfaces in extreme environments, allowing organisms to survive conditions ranging from harsh intertidal coasts to open oceans. Amyloids and amyloid-like materials are prevalent and amongst the most densely bonded aggregate structures, though how they contribute to wet adhesion is not well understood. In this work, waterborne protein solutions of individual whey proteins are cured in place using varied temperature to produce model adhesives enriched in amyloid or non-amyloid aggregates.
View Article and Find Full Text PDFEscherichia coli remains one of the most widely used workhorse microorganisms for the expression of heterologous proteins. The large number of cloning vectors and mutant host strains available for E. coli yields an impressively wide array of folded globular proteins in the laboratory.
View Article and Find Full Text PDFBarnacles integrate multiple protein components into distinct amyloid-like nanofibers arranged as a bulk material network for their permanent underwater attachment. The design principle for how chemistry is displayed using adhesive nanomaterials, and fragments of proteins that are responsible for their formation, remains a challenge to assess and is yet to be established. Here, we use engineered bacterial biofilms to display a library of amyloid materials outside of the cell using full-length and subdomain sequences from a major component of the barnacle adhesive.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a protein misfolding disease commonly characterized by neuritic amyloid plaques and proteinaceous fibrillar aggregate deposits composed of β-amyloid (Aβ) aggregates. The dynamic aggregation of Aβ forms toxic, nanoscale aggregate species which proceed from oligomers to fibrils. Currently, there is need for rapid and direct detection of Aβ peptide aggregation and interaction with lipid membranes, as detecting an interaction with various lipid environments will provide insights to better understand how interactions may modulate membrane function on cellular surfaces, leading to the progression of AD.
View Article and Find Full Text PDFThe permanent adhesive produced by adult barnacles is held together by tightly folded proteins that form amyloid-like materials distinct among marine foulants. In this work, we link stretches of alternating charged and noncharged linear sequences from a family of adhesive proteins to their role in forming fibrillar nanomaterials. Using recombinant proteins and short barnacle cement derived peptides (BCPs), we find a central sequence with charged motifs of the pattern [Gly/Ser/Val/Thr/Ala-X], where X are charged amino acids, to exert specific control over timing, structure, and morphology of fibril formation.
View Article and Find Full Text PDFThe appearance of neuritic amyloid plaques comprised of β-amyloid peptide (Aβ) in the brain is a predominant feature in Alzheimer's disease (AD). In the aggregation process, Aβ samples a variety of potentially toxic aggregate species, ranging from small oligomers to fibrils. Aβ has the ability to form a variety of morphologically distinct and stable amyloid fibrils.
View Article and Find Full Text PDFA hallmark of Alzheimer's disease, a late-onset neurodegenerative disease, is the deposition of neuritic amyloid plaques composed of aggregated forms of the β-amyloid peptide (Aβ). Aβ forms a variety of nanoscale, toxic aggregate species ranging from small oligomers to fibrils. Aβ and many of its aggregate forms strongly interact with lipid membranes, which may represent an important step in several toxic mechanisms.
View Article and Find Full Text PDFThere are a vast number of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), associated with the rearrangement of specific proteins to non-native conformations that promotes aggregation and deposition within tissues and/or cellular compartments. These diseases are commonly classified as protein-misfolding or amyloid diseases. The interaction of these proteins with liquid/surface interfaces is a fundamental phenomenon with potential implications for protein-misfolding diseases.
View Article and Find Full Text PDFA diverse number of diseases, including Alzheimer's disease, Huntington's disease, and type 2 diabetes, are characterized by the formation of fibrillar protein aggregates termed amyloids. The precise mechanism by which aggregates are toxic remains unclear; however, these proteins have been shown to interact strongly with lipid membranes. We investigated morphological and mechanical changes in model lipid bilayers exposed to amyloid-forming proteins by reconstructing the tapping forces associated with atomic force microscopy (AFM) imaging in solution.
View Article and Find Full Text PDFA pathological hallmark of Alzheimer's disease (AD), a late onset neurodegenerative disease, is the development of neuritic amyloid plaques, composed predominantly of aggregates of the β-amyloid (Aβ) peptide. It has been demonstrated that Aβ can aggregate into a variety of polymorphic aggregate structures under different chemical environments, and a potentially important environmental factor in dictating aggregate structure is the presence of surfaces. There are also several mutations clustered around the central hydrophobic core of Aβ (E22G Arctic mutation, E22K Italian mutation, D23N Iowa mutation, and A21G Flemish mutation).
View Article and Find Full Text PDFA hallmark of Alzheimer's disease (AD) is the rearrangement of the β-amyloid (Aβ) peptide to a non-native conformation that promotes the formation of toxic, nanoscale aggregates. Recent studies have pointed to the role of sample preparation in creating polymorphic fibrillar species. One of many potential pathways for Aβ toxicity may be modulation of lipid membrane function on cellular surfaces.
View Article and Find Full Text PDF