The Vision and Change in Undergraduate Biology Education reports cite the critical role of professional societies in undergraduate life science education and, since 2008, have called for the increased involvement of professional societies in support of undergraduate education. Our study explored the level of support being provided by societies for undergraduate education and documented changes in support during the Vision and Change era. Society representatives responded to a survey on programs, awards, meetings, membership, teaching resources, publications, staffing, finances, evaluation, and collaborations that address undergraduate faculty and students.
View Article and Find Full Text PDFLittle is known about the genetic basis of naturally occurring variation for sexually selected behavioral traits. Drosophila melanogaster, with its rich repertoire of courtship behavior and genomic and genetic resources, is an excellent model organism for addressing this question. We assayed a genetically diverse panel of lines with full genome sequences, the Drosophila Genetic Reference Panel, to assess the heritability of variation in courtship behavior and mating progression.
View Article and Find Full Text PDFMutation screens in model organisms have helped identify the foundation of many fundamental organismal phenotypes. An emerging question in evolutionary and behavioral biology is the extent to which these "developmental" genes contribute to the subtle individual variation that characterizes natural populations. A related question is whether individual differences arise from static differences in gene expression that arose during previous life stages, or whether they are due to dynamic regulation of expression during the life stage under investigation.
View Article and Find Full Text PDFMating behavior, including courtship and copulation, is a main component of male fitness, especially in species with no parental care. Variation in this behavior can thus be a target for mate choice and sexual selection, and can lead to evolution. The fruit fly, Drosophila melanogaster, has well-documented complex male courtship comprised of a sequence behaviors, and is an ideal model for behavior-genetic analysis.
View Article and Find Full Text PDFBackground: Recent comparative genomic studies claim local syntenic gene-interleaving relationships in Ashbya gossypii and Kluyveromyces waltii are compelling evidence for an ancient whole-genome duplication event in Saccharomyces cerevisiae. We here test, using Hannenhalli-Pevzner rearrangement algorithms that address the multiple genome rearrangement problem, whether syntenic patterns are proof of paleopolyploidization.
Results: We focus on (1) pairwise comparison of gene arrangement sequences in A.
Current evolutionary theories explain the origin of aging as a byproduct of the decline in the force of natural selection with age. These theories seem inconsistent with the well-documented occurrence of late-life mortality plateaus, since under traditional evolutionary models mortality rates should increase monotonically after sexual maturity. However, the equilibrium frequencies of deleterious alleles affecting late life are lower than predicted under traditional models, and thus evolutionary models can accommodate mortality plateaus if deleterious alleles are allowed to have effects spanning a range of neighboring age classes.
View Article and Find Full Text PDFProperties of genes underlying variation in complex traits are largely unknown, especially for variation that segregates within populations. Here, we evaluate allelic effects, cis and trans regulation, and dominance patterns of transcripts that are genetically variable in a natural population of Drosophila melanogaster. Our results indicate that genetic variation due to the third chromosome causes mainly additive and nearly additive effects on gene expression, that cis and trans effects on gene expression are numerically about equal, and that cis effects account for more genetic variation than do trans effects.
View Article and Find Full Text PDFWe combined traditional quantitative genetics and oligonucleotide microarrays to examine within-population genetic variation in a trait closely related to fitness. The trait, male reproductive success under competitive conditions (MCRS), is of central importance to both life-history and sexual-selection theory. We identified 27 candidate genes whose expression levels were associated with within-population variation in MCRS.
View Article and Find Full Text PDF