Biology education research (BER) is a recently emerging field mainly focused on the learning and teaching of biology in postsecondary education. As BER continues to grow, exploring what goals, questions, and scholarship the field encompasses will provide an opportunity for the community to reflect on what new lines of inquiry could be pursued in the future. There have been top-down approaches at characterizing BER, such as aims and scope provided by professional societies or peer-reviewed journals, and literature analyses with evidence for current and historical research trends.
View Article and Find Full Text PDFThis four-year study describes the assessment of a bifurcated laboratory curriculum designed to provide upper-division undergraduate majors in two life science departments meaningful exposure to authentic research. The timing is critical as it provides a pathway for both directly admitted and transfer students to enter research. To fulfill their degree requirements, all majors complete one of two paths in the laboratory program.
View Article and Find Full Text PDFDuring Drosophila development, the formin actin nucleator Cappuccino (Capu) helps build a cytoplasmic actin mesh throughout the oocyte. Loss of Capu leads to female sterility, presumably because polarity determinants fail to localize properly in the absence of the mesh. To gain deeper insight into how Capu builds this actin mesh, we systematically characterized seven capu alleles, which have missense mutations in Capu's formin homology 2 (FH2) domain.
View Article and Find Full Text PDFFormin family actin nucleators are potential coordinators of the actin and microtubule cytoskeletons, as they can both nucleate actin filaments and bind microtubules in vitro. To gain a more detailed mechanistic understanding of formin-microtubule interactions and formin-mediated actin-microtubule cross-talk, we studied microtubule binding by Cappuccino (Capu), a formin involved in regulating actin and microtubule organization during Drosophila oogenesis. We found that two distinct domains within Capu, FH2 and tail, work together to promote high-affinity microtubule binding.
View Article and Find Full Text PDF