The genotype-phenotype (GP) map consists of developmental and physiological mechanisms mapping genetic onto phenotypic variation. It determines the distribution of heritable phenotypic variance on which selection can act. Comparative studies of morphology as well as of gene regulatory networks show that the GP map itself evolves, yet little is known about the actual evolutionary mechanisms involved.
View Article and Find Full Text PDFJ Exp Zool B Mol Dev Evol
March 2011
If we wish to understand whether development influences the rate or direction of morphological evolution, we must first understand the developmental bases of morphological variation within species. However, quantitative variation in adult morphology is the product of molecular and cellular processes unfolding from embryonic development through juvenile growth to maturity. The Atchley-Hall model provides a useful framework for dissecting complex morphologies into their component parts as a way of determining which developmental processes contribute to variation in adult form.
View Article and Find Full Text PDFPrevious studies on the LG,SM advanced intercross line have identified approximately 40 quantitative trait loci (QTL) for long -bone (humerus, ulna, femur, and tibia) lengths. In this study, long-bone-length QTL were fine-mapped in the F(34) generation (n = 1424) of the LG,SM advanced intercross. Environmental effects were assessed by dividing the population by sex between high-fat and low-fat diets, producing eight sex/diet cohorts.
View Article and Find Full Text PDFWe previously mapped Adip1, an obesity quantitative trait locus (QTL), to the central portion of murine chromosome 1 containing the calpain-10 (Capn10) gene. Human studies have associated calpain-10 (CAPN10) variants with type 2 diabetes and various metabolic traits. We performed a quantitative hybrid complementation test (QHCT) to determine whether differences attributed to Adip1 are the result of variant Capn10 alleles in LG/J and SM/J mice.
View Article and Find Full Text PDFQuantitative trait locus (QTL) mapping techniques are frequently used to identify genomic regions associated with variation in phenotypes of interest. However, the F(2) intercross and congenic strain populations usually employed have limited genetic resolution resulting in relatively large confidence intervals that greatly inhibit functional confirmation of statistical results. Here we use the increased resolution of the combined F(9) and F(10) generations (n = 1455) of the LG,SM advanced intercross to fine-map previously identified QTL associated with the lengths of the humerus, ulna, femur, and tibia.
View Article and Find Full Text PDFIntroduction: Study of mutations with large phenotypic effects has allowed the identification of key players in skeletal development. However, the molecular nature of variation in large, phenotypically normal populations tends to be characterized by smaller phenotypic effects that remain undefined.
Materials And Methods: We use interval mapping and quantitative trait locus (QTL) mapping techniques in the combined F2-F3 populations (n = 2111) of an LG/J x SM/J mouse intercross to detect QTLs associated with the lengths of the humerus, ulna, femur, and tibia.
Quantitative trait locus (QTL) studies of a skeletal trait or a few related skeletal components are becoming commonplace, but as yet there has been no investigation of pleiotropic patterns throughout the skeleton. We present a comprehensive survey of pleiotropic patterns affecting mouse skeletal morphology in an intercross of LG/J and SM/J inbred strains (N = 1040), using QTL analysis on 70 skeletal traits. We identify 798 single-trait QTL, coalescing to 105 loci that affect on average 7-8 traits each.
View Article and Find Full Text PDFPleiotropy is an aspect of genetic architecture underlying the phenotypic covariance structure. The presence of genetic variation in pleiotropy is necessary for natural selection to shape patterns of covariation between traits. We examined the contribution of differential epistasis to variation in the intertrait relationship and the nature of this variation.
View Article and Find Full Text PDF