Publications by authors named "Elizabeth A Mueller"

Article Synopsis
  • The Lyme disease agent is a complex bacterium with a segmented genome, including multiple chromosomes and over 20 plasmids, which can remain dormant in ticks for extended periods without losing the ability to grow when nutrients are available.
  • Research reveals that when cultured cells are deprived of nutrients, they quickly lose their ability to reproduce, partly due to the loss of essential genetic elements.
  • Interestingly, unlike lab-cultured cells, ticks that have been starved for up to 14 months maintain their cell growth abilities and do not lose plasmids, indicating that the tick's midgut supports the bacterium's genome and growth during starvation.
View Article and Find Full Text PDF
Article Synopsis
  • * The oligosaccharyltransferase (OST) complex, particularly the STT3A/B enzymes, plays a crucial role in this glycosylation and has emerged as a promising target for broad-spectrum antiviral drugs.
  • * The study highlights the balance between the antiviral potential of STT3A/B inhibitors, like NGI-1, and the need to assess their safety for humans, leading to the discovery of improved compounds that ensure both efficacy and lower toxicity risks.
View Article and Find Full Text PDF

Conventional antimicrobial discovery relies on targeting essential enzymes in pathogenic organisms, contributing to a paucity of new antibiotics to address resistant strains. Here, by targeting a non-essential enzyme, Borrelia burgdorferi HtpG, to deliver lethal payloads, we expand what can be considered druggable within any pathogen. We synthesized HS-291, an HtpG inhibitor tethered to the photoactive toxin verteporfin.

View Article and Find Full Text PDF

Multidrug-resistant organisms (MDROs) represent a continuing healthcare crisis with no definitive solution to date. An alternative to antibiotics is the development of therapies and vaccines using biocompatible physical methods such as ultrashort pulsed (USP) lasers, which have previously been shown to inactivate pathogens while minimizing collateral damage to human cells, blood proteins, and vaccine antigens. Here we demonstrate that visible USP laser treatment results in bactericidal effect (≥3-log load reduction) against clinically significant MDROs, including methicillin-resistant Staphylococcus aureus and extended spectrum beta-lactamase-producing Escherichia coli.

View Article and Find Full Text PDF

Carboxy ester prodrugs are widely employed to increase oral absorption and potency of phosphonate antibiotics. Prodrugging can mask problematic chemical features that prevent cellular uptake and may enable tissue-specific compound delivery. However, many carboxy ester promoieties are rapidly hydrolyzed by serum esterases, limiting their therapeutic potential.

View Article and Find Full Text PDF

Nearly all bacteria are encased in peptidoglycan, an extracytoplasmic matrix of polysaccharide strands crosslinked through short peptide stems. In the Gram-negative model organism Escherichia coli, more than 40 synthases and autolysins coordinate the growth and division of the peptidoglycan sacculus in the periplasm. The precise contribution of many of these enzymes to peptidoglycan metabolism remains unclear due to significant apparent redundancy, particularly among the autolysins.

View Article and Find Full Text PDF

Single-celled organisms must adapt their physiology to persist and propagate across a wide range of environmental conditions. The growth and division of bacterial cells depend on continuous synthesis of an essential extracellular barrier: the peptidoglycan cell wall, a polysaccharide matrix that counteracts turgor pressure and confers cell shape. Unlike many other essential processes and structures within the bacterial cell, the peptidoglycan cell wall and its synthesis machinery reside at the cell surface and are thus uniquely vulnerable to the physicochemical environment and exogenous threats.

View Article and Find Full Text PDF

Peptidoglycan (PG) is essential in most bacteria. Thus, it is often targeted by various assaults, including interbacterial attacks via the type VI secretion system (T6SS). Here, we report that the Gram-negative bacterium strain ATCC 17978 produces, secretes, and incorporates the noncanonical d-amino acid d-lysine into its PG during stationary phase.

View Article and Find Full Text PDF

Cell size is a complex trait, derived from both genetic and environmental factors. Environmental determinants of bacterial cell size identified to date primarily target assembly of cytosolic components of the cell division machinery. Whether certain environmental cues also impact cell size through changes in the assembly or activity of extracytoplasmic division proteins remains an open question.

View Article and Find Full Text PDF

Unlabelled: Although the peptidoglycan cell wall is an essential structural and morphological feature of most bacterial cells, the extracytoplasmic enzymes involved in its synthesis are frequently dispensable under standard culture conditions. By modulating a single growth parameter-extracellular pH-we discovered a subset of these so-called 'redundant' enzymes in are required for maximal fitness across pH environments. Among these pH specialists are the class A penicillin binding proteins PBP1a and PBP1b; defects in these enzymes attenuate growth in alkaline and acidic conditions, respectively.

View Article and Find Full Text PDF

Long before pathogenic interactions with eukaryotic cells evolved, bacteria were competing with one another for limited resources. In this issue, Ting et al. (2018) identify previously unappreciated players in the interbacterial arms race that may be the evolutionary ancestors of eukaryotic cell-targeting ADP-ribosyltransferase toxins.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is an inflammatory skin condition strongly associated with colonization and infection. strains shift in populations in ~10-year intervals depending on virulence factors. Shifts in virulence factors may in part explain the racial differences observed in the levels of prevalence and severity of AD.

View Article and Find Full Text PDF

The 1928 Bundaberg disaster is one of the greatest vaccine tragedies in history. Of 21 children immunized with a diphtheria toxin-antitoxin preparation contaminated with Staphylococcus aureus, 18 developed life-threatening disease and 12 died within 48  h. Historically, the deaths have been attributed to α-toxin, a secreted cytotoxin produced by most S.

View Article and Find Full Text PDF

Background: Skin and surgical infections due to Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii are causes of patient morbidity and increased healthcare costs. These organisms grow planktonically and as biofilms, and many strains exhibit antibiotic resistance. This study examines the antibacterial and anti-biofilm activity of glycerol monolaurate (GML), as solubilized in a non-aqueous vehicle (5% GML Gel), as a novel, broadly-active topical antimicrobial.

View Article and Find Full Text PDF

Gram-positive bacteria cause serious human illnesses through combinations of cell surface and secreted virulence factors. We initiated studies with four of these organisms to develop novel topical antibacterial agents that interfere with growth and exotoxin production, focusing on menaquinone analogs. Menadione, 1,4-naphthoquinone, and coenzymes Q1 to Q3 but not menaquinone, phylloquinone, or coenzyme Q10 inhibited the growth and to a greater extent exotoxin production of Staphylococcus aureus, Bacillus anthracis, Streptococcus pyogenes, and Streptococcus agalactiae at concentrations of 10 to 200 μg/ml.

View Article and Find Full Text PDF