Objectives: Remediation can be crucial and high stakes for medical learners, and experts agree it is often not optimally conducted. Research from other fields indicates that explicit incorporation of emotion improves education because of emotion's documented impacts on learning. Because this could present an important opportunity for improving remediation, we aimed to investigate how the literature on remediation interventions in medical education discusses emotion.
View Article and Find Full Text PDFBackground: We employed DNA microarray technology to investigate the host response to Streptococcus pneumoniae in a mouse model of asymptomatic carriage. Over a period of six weeks, we profiled transcript abundance and complexity in the Nasal Associated Lymphoid Tissue (NALT) to identify genes whose expression differed between pneumococcal-colonized and uncolonized states.
Results: Colonization with S.
Streptococcus pneumoniae causes several diseases, including otitis media, pneumonia, and meningitis. Although little is known about the regulation of or how individual pneumococcal factors contribute to these disease states, there is evidence suggesting that some factors are regulated by a cell-density-dependent mechanism (quorum sensing). Quorum sensing allows bacteria to couple transcription with changes in cell density; bacteria achieve this by sensing and responding to small diffusible signaling molecules.
View Article and Find Full Text PDFBackground: Whereas genome sequencing has given us high-resolution pictures of many different species of bacteria, microarrays provide a means of obtaining information on genome composition for many strains of a given species. Genome-composition analysis using microarrays, or 'genomotyping', can be used to categorize genes into 'present' and 'divergent' categories based on the level of hybridization signal. This typically involves selecting a signal value that is used as a cutoff to discriminate present (high signal) and divergent (low signal) genes.
View Article and Find Full Text PDFSexual reproduction and recombination are essential for the survival of most eukaryotic populations. Until recently, the impact of these processes on the structure of bacterial populations has been largely overlooked. The advent of large-scale whole-genome sequencing and the concomitant development of molecular tools, such as microarray technology, facilitate the sensitive detection of recombination events in bacteria.
View Article and Find Full Text PDFThe objective of this study was to determine (i) if complementation of ureB-negative Helicobacter pylori restores colonization and (ii) if urease is a useful reporter for promoter activity in vivo. Strains used were M6, M6DeltaureB, and 10 recombinant derivatives of M6 or M6DeltaureB in which urease expression was under the control of different H. pylori promoters.
View Article and Find Full Text PDF